模型预测笔记(一):数据清洗及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)

news2024/11/23 21:18:36

模型预测

  • 一、导入关键包
  • 二、如何载入、分析和保存文件
  • 三、修改缺失值
    • 3.1 众数
    • 3.2 平均值
    • 3.3 中位数
    • 3.4 0填充
  • 四、修改异常值
    • 4.1 删除
    • 4.2 替换
  • 五、数据绘图分析
    • 5.1 饼状图
      • 5.1.1 绘制某一特征的数值情况(二分类)
    • 5.2 柱状图
      • 5.2.1 单特征与目标特征之间的图像
      • 5.2.2 多特征与目标特征之间的图像
    • 5.3 折线图
      • 5.3.1 多个特征之间的关系图
    • 5.4 散点图
  • 六、相关性分析
    • 6.1 皮尔逊相关系数
    • 6.2 斯皮尔曼相关系数
    • 6.3 肯德尔相关系数
    • 6.4 计算热力图
  • 七、数据归一化
  • 八、模型搭建
  • 九、模型训练
  • 十、评估模型
  • 十一、预测模型

一、导入关键包

# 导入数据分析需要的包
import pandas as pd
import numpy as np
# 可视化包
import seaborn as sns
sns.set(style="whitegrid")
import matplotlib.pyplot as plt
%matplotlib inline
# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')
# 导入数据分析需要的包
import pandas as pd
import numpy as np
from datetime import datetime

# 构建多个分类器
from sklearn.ensemble import RandomForestClassifier          # 随机森林
from sklearn.svm import SVC, LinearSVC                       # 支持向量机
from sklearn.linear_model import LogisticRegression          # 逻辑回归
from sklearn.neighbors import KNeighborsClassifier           # KNN算法
from sklearn.naive_bayes import GaussianNB                   # 朴素贝叶斯
from sklearn.tree import DecisionTreeClassifier              # 决策树分类器
from xgboost import XGBClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier   
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import GridSearchCV  # 网格搜索
np.set_printoptions(suppress=True)

# 显示中文
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False

二、如何载入、分析和保存文件

df=pd.read_csv('data/dataset.csv')


df.head(5)# 查看前几列数据
df.tail() # 返回CSV文件的最后几行数据。
df.info() # 显示CSV文件的基本信息,包括数据类型、列数、行数、缺失值等。
df.describe()# 对CSV文件的数值型数据进行统计描述,包括计数、均值、标准差、最小值、最大值等。
df.shape()# 返回CSV文件的行数和列数。
df.unique()  # 返回CSV文件中某一列的唯一值。
df.value_counts()# 计算CSV文件中某一列中每个值的出现次数。
df.groupby() # 按照某一列的值进行分组,并对其他列进行聚合操作,如求和、计数、平均值等。
df.sort_values()# 按照某一列的值进行排序。
df.pivot_table()# 创建透视表,根据指定的行和列对数据进行汇总和分析。

# 保存处理后的数据集
3df.to_csv('data/Telecom_data_flag.csv')

三、修改缺失值

3.1 众数

# 对每一列属性采用相应的缺失值处理方式,通过分析发现这类数据都可以采用众数的方式解决
df.isnull().sum()
modes = df.mode().iloc[0]
print(modes)
df = df.fillna(modes)
print(df.isnull().sum())

3.2 平均值

mean_values = df.mean()
print(mean_values)
df = df.fillna(mean_values)
print(df.isnull().sum())

3.3 中位数

median_values = df.median()
print(median_values)
df = df.fillna(median_values)
print(df.isnull().sum())

3.4 0填充

df = df.fillna(0)
print(df.isnull().sum())

四、修改异常值

4.1 删除

1.删除DataFrame表中全部为NaN的行

	your_dataframe.dropna(axis=0,how='all') 

2.删除DataFrame表中全部为NaN的列

	your_dataframe.dropna(axis=1,how='all') 

3.删除表中含有任何NaN的行

	your_dataframe.dropna(axis=0,how='any') 

4.删除表中含有任何NaN的列

  your_dataframe.dropna(axis=1,how='any')

4.2 替换

这里的替换可以参考前文的中位数,平均值,众数,0替换等。

	replace_value = 0.0
	# 这里设置 inplace 为 True,能够直接把表中的 NaN 值替换掉
	your_dataframe.fillna(replace_value, inplace=True)
	# 如果不设置 inplace,则这样写就行
	# new_dataframe = your_dataframe.fillna(replace_value)

五、数据绘图分析

5.1 饼状图

5.1.1 绘制某一特征的数值情况(二分类)

# 查看总体客户流失情况
churnvalue = df["LEAVE_FLAG"].value_counts()
labels = df["LEAVE_FLAG"].value_counts().index
plt.pie(churnvalue,
        labels=["未流失","流失"],
        explode=(0.1,0),
        autopct='%.2f%%', 
        shadow=True,)
plt.title("客户流失率比例",size=24)
plt.show()
# 从饼形图中看出,流失客户占总客户数的很小的比例,流失率达3.58%

在这里插入图片描述

5.2 柱状图

5.2.1 单特征与目标特征之间的图像

# 粘性/忠诚度分析  包括绑定银行卡张数
fig, axes = plt.subplots(1, 1, figsize=(12,12))
plt.subplot(1,1,1) 
# palette参数表示设置颜色
gender=sns.countplot(x='BANK_NUM',hue="LEAVE_FLAG",data=df,palette="Pastel2") 
plt.xlabel("绑定银行卡张数",fontsize=16)
plt.title("LEAVE_FLAG by BANK_NUM",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)     # 设置坐标轴字体大小
# 从此表可知,对于没有绑定银行卡的用户流失情况会更大,应该加强督促用户绑定银行卡

在这里插入图片描述

# 查看正常用户与流失用户在上网流量上的差别
plt.figure(figsize=(10,6))
g = sns.FacetGrid(data = df,hue = 'LEAVE_FLAG', height=4, aspect=3)
g.map(sns.distplot,'BYTE_ALL',norm_hist=True)
g.add_legend()
plt.ylabel('density',fontsize=16)
plt.xlabel('BYTE_ALL',fontsize=16)
plt.xlim(0, 100)
plt.tick_params(labelsize=13)     # 设置坐标轴字体大小
plt.tight_layout()
plt.show()
# 从上图看出,上网流量少的用户流失率相对较高。

在这里插入图片描述

5.2.2 多特征与目标特征之间的图像

这里绘制的多个二分类特征的情况是与目标特征之间的关系

# 粘性/忠诚度分析  包括是否捆绑微信、是否捆绑支付宝
# sns.countplot()函数绘制了"是否使用支付宝"(IS_ZFB)这一列的柱状图,并根据"LEAVE_FLAG"(是否离网)进行了颜色分类。
fig, axes = plt.subplots(1, 2, figsize=(12,12))
plt.subplot(1,2,1) 
# palette参数表示设置颜色
partner=sns.countplot(x="IS_ZFB",hue="LEAVE_FLAG",data=df,palette="Pastel2")
plt.xlabel("是否使用支付宝(1代表使用,0代表使用)")
plt.title("LEAVE_FLAG by IS_ZFB",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)   # 设置坐标轴字体大小

plt.subplot(1,2,2)
seniorcitizen=sns.countplot(x="IS_WX",hue="LEAVE_FLAG",data=df,palette="Pastel2")
plt.xlabel("是否使用微信(1代表使用,0代表使用)")
plt.title("LEAVE_FLAG by IS_WX",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)   # 设置坐标轴字体大小
# 从此表可知  支付宝绑定目前对于用户流失没有影响,微信的绑定影响会稍微大点,可能是微信用户用的较多

在这里插入图片描述

# 异常性 根据用户流失情况来结合判定
covariables=["CMPLNT_NUM", "STOP_COUNT"]
fig,axes=plt.subplots(1,2,figsize=(20,12))
for i, item in enumerate(covariables):
    '''
    0,'CMPLNT_NUM'
    1,'STOP_COUNT'
    '''
    plt.subplot(1,2,(i+1))
    ax=sns.countplot(x=item,hue="LEAVE_FLAG",data=df,palette="Set2")
    plt.xlabel(str(item),fontsize=16)
    plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
    plt.title("LEAVE_FLAG by "+ str(item),fontsize=20)
    i=i+1
plt.tight_layout()
plt.show()
# 从此表可知 最近6个月累计投诉次数间接性的决定了用户的流失,停机天数也和用户流失成正相关。

在这里插入图片描述

5.3 折线图

5.3.1 多个特征之间的关系图

# 用户的成长性分析,结合用户流失情况。
# 包括流量趋势、语音通话次数趋势、语音通话时长趋势、交往圈趋势
# 提取特征数据列
feature1 = df["LIULIANG_B"]
feature2 = df["YUYING_COUNT"]
feature3 = df["YUYING_B"]
feature4 = df["JIAOWANG_B"]

# 绘制折线图
plt.plot(feature1, label="LIULIANG_B")
plt.plot(feature2, label="YUYING_COUNT")
plt.plot(feature3, label="YUYING_B")
plt.plot(feature4, label="JIAOWANG_B")

# 添加标题和标签
plt.title("Trend of User growth")
plt.xlabel("Index")
plt.ylabel("Value")

# 添加图例
plt.legend()

# 显示图表
plt.show()
# 从此图可以发现针对流量趋势来说,用户的波动是最大的。

在这里插入图片描述

5.4 散点图

df.plot(x="SERV_ID_COUNT", y="CDR_NUM", kind="scatter", c="red")
plt.show()

这段代码的作用是绘制一个以"SERV_ID_COUNT"为横轴,"CDR_NUM"为纵轴的散点图,并将散点的颜色设置为红色。通过这个散点图,可以直观地观察到"SERV_ID_COUNT"和"CDR_NUM"之间的关系。
在这里插入图片描述

六、相关性分析

6.1 皮尔逊相关系数

plt.figure(figsize=(16,8))
df.corr()['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()
# 从图可以直观看出,YUYING_COUNT 、YUYING_B、IS_ZFB、BALANCE、JIAOWANG_B、IS_WX这六个变量与LEAVE_FLAG目标变量相关性最弱。

在这里插入图片描述

6.2 斯皮尔曼相关系数

plt.figure(figsize=(16,8))
df.corr(method='spearman')['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()

6.3 肯德尔相关系数

plt.figure(figsize=(16,8))
df.corr(method='kendall')['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()

6.4 计算热力图

# 计算相关性矩阵
corr_matrix = df.corr()

# 绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap", fontsize=16)
plt.show()

七、数据归一化

特征主要分为连续特征和离散特征,其中离散特征根据特征之间是否有大小关系又细分为两类。

  • 连续特征:一般采用归一标准化方式处理。
  • 离散特征:特征之间没有大小关系。
  • 离散特征:特征之间有大小关联,则采用数值映射。
# 通过归一化处理使特征数据标准为1,均值为0,符合标准的正态分布,
# 降低数值特征过大对预测结果的影响
# 除了目标特征全部做归一化,目标特征不用做,归一化会导致预测结果的解释变得困难
from sklearn.preprocessing import StandardScaler  
# 实例化一个转换器类
scaler = StandardScaler(copy=False)
target = df["LEAVE_FLAG"]
# 提取除目标特征外的其他特征
other_features = df.drop("LEAVE_FLAG", axis=1)
# 对其他特征进行归一化
normalized_features = scaler.fit_transform(other_features)
# 将归一化后的特征和目标特征重新组合成DataFrame
normalized_data = pd.DataFrame(normalized_features, columns=other_features.columns)
normalized_data["LEAVE_FLAG"] = target
normalized_data.head()

八、模型搭建

# 深拷贝
X=normalized_data.copy()
X.drop(['LEAVE_FLAG'],axis=1, inplace=True)
y=df["LEAVE_FLAG"]
#查看预处理后的数据
X.head()

# 建立训练数据集和测试数据集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
print("原始训练集包含样本数量: ", len(X_train))
print("原始测试集包含样本数量:  ", len(X_test))
print("原始样本总数: ", len(X_train)+len(X_test))

# 使用分类算法 
Classifiers=[
            ["RandomForest",RandomForestClassifier()],
            ["LogisticRegression",LogisticRegression(C=1000.0, random_state=30, solver="lbfgs",max_iter=100000)],
            ["NaiveBayes",GaussianNB()],
            ["DecisionTree",DecisionTreeClassifier()],
            ["AdaBoostClassifier", AdaBoostClassifier()],
            ["GradientBoostingClassifier", GradientBoostingClassifier()],
            ["XGB", XGBClassifier()]
]

九、模型训练

from datetime import datetime
import pickle
import joblib

def get_current_time():
    current_time = datetime.now()
    formatted_time = current_time.strftime("%Y-%m-%d %H:%M:%S")
    return current_time, formatted_time

Classify_result=[]
names=[]
prediction=[]
i = 0

for name, classifier in Classifiers:
    start_time, formatted_time = get_current_time()
    print("**********************************************************************")
    print("第{}个模型训练开始时间:{}  模型名称为:{}".format(i+1, formatted_time, name))
    classifier = classifier
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
    recall = recall_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
    f1score = f1_score(y_test, y_pred)
    model_path = 'models/{}_{}_model.pkl'.format(name, round(precision, 5))
    print("开始保存模型文件路径为:{}".format(model_path))
    # 保存模型方式1
    #     with open('models/{}_{}_model.pkl'.format(name, precision), 'wb') as file:
    #         pickle.dump(classifier, file)
    #     file.close()
    # 保存模型方式2
    joblib.dump(classifier, model_path)
    
    end_time = datetime.now()  # 获取训练结束时间
    print("第{}个模型训练结束时间:{}".format(i+1, end_time.strftime("%Y-%m-%d %H:%M:%S")))
    print("训练耗时:", end_time - start_time)

    # 打印训练过程中的指标
    print("Classifier:", name)
    print("Recall:", recall)
    print("Precision:", precision)
    print("F1 Score:", f1score)
    print("**********************************************************************")
    
    # 保存指标结果
    class_eva = pd.DataFrame([recall, precision, f1score])
    Classify_result.append(class_eva)
    
    name = pd.Series(name)
    names.append(name)
    
    y_pred = pd.Series(y_pred)
    prediction.append(y_pred)
    
    i += 1

在这里插入图片描述

十、评估模型

召回率(recall)的含义是:原本为对的当中,预测为对的比例(值越大越好,1为理想状态)

精确率、精度(precision)的含义是:预测为对的当中,原本为对的比例(值越大越好,1为理想状态)

F1分数(F1-Score)指标综合了Precision与Recall的产出的结果

F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。

classifier_names=pd.DataFrame(names)
# 转成列表
classifier_names=classifier_names[0].tolist()
result=pd.concat(Classify_result,axis=1)
result.columns=classifier_names
result.index=["recall","precision","f1score"]
result

在这里插入图片描述

十一、预测模型

对于h5模型

from keras.models import load_model
model = load_model('lstm_model.h5')
pred = model.predict(X, verbose=0)
print(pred)

对于pkl模型

loaded_model = joblib.load('models/{}_model.pkl'.format(name))

由于没有预测数据集,选择最后n条数为例进行预测。

# 由于没有预测数据集,选择最后n条数为例进行预测。
n = 500
pred_id = SERV_ID.tail(n)
# 提取预测数据集特征(如果有预测数据集,可以一并进行数据清洗和特征提取)
pred_x = X.tail(n)

# 使用上述得到的最优模型
model = GradientBoostingClassifier()

model.fit(X_train,y_train)
pred_y = model.predict(pred_x) # 预测值

# 预测结果
predDf = pd.DataFrame({'SERV_ID':pred_id, 'LEAVE_FLAG':pred_y})
print("*********************原始的标签情况*********************")
print(df.tail(n)['LEAVE_FLAG'].value_counts())
print("*********************预测的标签情况*********************")
print(predDf['LEAVE_FLAG'].value_counts())
print("*********************预测的准确率*********************")
min1 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[0],predDf['LEAVE_FLAG'].value_counts()[0])
min2 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[1],predDf['LEAVE_FLAG'].value_counts()[1])
print("{}%".format(round((min1+min2)/n,3)*100))
# 由于没有预测数据集,选择最后n条数为例进行预测。
n = 500 # 预测的数量
pred_id = SERV_ID.tail(n)
# 提取预测数据集特征(如果有预测数据集,可以一并进行数据清洗和特征提取)
pred_x = X.tail(n)
# 加载模型
loaded_model = joblib.load('models/GradientBoostingClassifier_0.77852_model.pkl')
# 使用加载的模型进行预测
pred_y = loaded_model.predict(pred_x)
# 预测结果
predDf = pd.DataFrame({'SERV_ID':pred_id, 'LEAVE_FLAG':pred_y})
print("*********************原始的标签情况*********************")
print(df.tail(n)['LEAVE_FLAG'].value_counts())
print("*********************预测的标签情况*********************")
print(predDf['LEAVE_FLAG'].value_counts())
print("*********************预测的准确率*********************")
min1 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[0],predDf['LEAVE_FLAG'].value_counts()[0])
min2 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[1],predDf['LEAVE_FLAG'].value_counts()[1])
print("{}%".format(round((min1+min2)/n,3)*100))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/892189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

seller_info-获得淘宝店铺详情

一、接口参数说明: seller_info-获得淘宝店铺详情,点击更多API调试,请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/seller_info 名称类型必须描述keyString是调用key(点击获…

JVM——类的生命周期

文章目录 类加载过程加载验证准备解析初始化 卸载 一个类的完整生命周期如下: 类加载过程 Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚拟机是如何加载这些 Class 文件呢? 系统加载 Class 类型的文件主要三步:加载->连接->…

从xxl-job源码看Scheduler定时任务的原始实现

一、背景 因为xxl-job本身是统一的分布式任务调度框架,所以在实现定时任务的时候,就断不能再去依赖别人了。 其次,它尽可能只依赖spring框架,或者说spring boot/cloud。 也就是说,它会尽少地使用spring外的三方框架。…

AutoSAR系列讲解(深入篇)13.3-Mcal Dio配置

目录 一、Dio port配置 二、Dio pin配置 一、Dio port配置 同之前的Port一样,双击进入Dio配置界面后会看到几乎差不多的配置界面。General和Port类似,我们不再赘述,主要讲解Dio的配置 1. 其实Dio并没有什么实质的作用,主要起到了一个重命名的功能。双击DioConfig_0进入下…

小黑子—JavaWeb:第七章 - Vue 与 Element 综合案例

JavaWeb入门7.0 1. VUE1.1 Vue 快速入门1.2 Vue 常用指令1.2.1 v-bind1.2.2 v-model1.2.3 v-on1.2.4 v-if1.2.5 v-show1.2.6 v-for 1.3 Vue 生命周期1.4 Vue案例1.4.1 查询所有1.4.2 新增品牌 2. Element2.1 Element快速入门2.2 Element布局2.3 Element 常用组件2.3.1 表格2.3.…

京东API简介及应用实例

京东API(Application Programming Interface),即京东开放平台的接口,是京东提供给开发者的一组规定格式和约定的接口,用于实现与京东电商平台进行数据交互和功能调用。通过使用京东API,开发者可以实现商品查…

Unity的TimeScale的影响范围分析

大家好,我是阿赵。 这期来说一下Unity的TimeScale。 一、前言 Unity提供了Time这个类,来控制时间。其实我自己倒是很少使用这个Time,因为做网络同步的游戏,一般是需要同步服务器时间,所以我比较多是在使用System.Date…

【运筹优化】贪心启发式算法和蜘蛛猴优化算法求解连续选址问题 + Java代码实现

文章目录 一、问题描述二、思路分析三、解决方案3.1 贪心启发式算法3.2 群体智能算法(蜘蛛猴优化算法) 四、总结 一、问题描述 选址问题是指在规划区域里选择一个或多个设施的位置,使得目标最优。 按照规划区域的结构划分,可以将…

QT的network的使用

一个简单的双向的网络连接和信息发送。效果如下图所示: 只需要配置这个主机的IP和端口号,由客户端发送链接请求。即可进行连接。 QT的network模块是一个用于网络编程的模块,它提供了一系列的类和函数,可以让您使用TCP/IP协议来创…

pdf格式文件下载不预览,云存储的跨域解决

需求背景 后端接口中返回的是pdf文件路径比如&#xff1a; pdf文件路径 &#xff08;https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&#xff09; 前端适配是这样的 <ahref"https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&…

Spring框架之AOP详解

目录 一、前言 1.1.Spring简介 1.2.使用Spring的优点 二、Spring之AOP详解 2.1.什么是AOP 2.2.AOP在Spring的作用 2.3.AOP案例讲解 三、AOP案例实操 3.0.代理小故事&#xff08;方便理解代理模式&#xff09; 3.1.代码演示 3.2.前置通知 3.3.后置通知 3.3.环绕通知…

聚观早报|俞敏洪东方甄选带货北京特产;京东物流上半年盈利

【聚观365】8月17日消息 俞敏洪东方甄选直播间带货北京特产 京东物流上半年实现盈利 百度CTO称大语言模型为人工智能带来曙光 腾讯控股第二季度盈利262亿元 2023中国家庭智慧大屏消费白皮书 俞敏洪东方甄选直播间带货北京特产 近日&#xff0c;东方甄选在北京平谷区开播&…

Linux:shell脚本:基础使用(5)《正则表达式-sed工具》

sed是一种流编辑器&#xff0c;它是文本处理中非常中的工具&#xff0c;能够完美的配合正则表达式使用&#xff0c;功能不同凡响。 处理时&#xff0c;把当前处理的行存储在临时缓冲区中&#xff0c;称为“模式空间”&#xff08;pattern space&#xff09;&#xff0c;接着用s…

数据库MySQL 创建表INSERT

创建表 常见数据类型(列类型) 列类型之整型 unsigned的用法 列类型之bit 二进制表示 bit&#xff08;8&#xff09;表示一个字节 列类型之小数 1.单精度float 双精度double 2.decimal 自定义 M为小数点前面有多少位 D是小数点后面有多少位 列类型之字符串 1.char( 字符 )…

实现简单的element-table的拖拽效果

第一步&#xff0c;先随便创建element表格 <el-table ref"dragTable" :data"tableData" style"width: 100%" border fit highlight-current-row><el-table-column label"日期" width"180"><template slot-sc…

element-Plus中el-menu菜单无法正常收缩解决方案

<el-menu :collapse"true">如图所示收缩之后&#xff0c;有子级的菜单还有箭头文字显示 从代码对比看层级就不太对了&#xff0c;嵌套错误了&#xff0c;正常下方官网的ul标签下直接是li&#xff0c;在自己的代码中&#xff0c;ul标签下是div标签&#xff0c;层…

爬虫工具的选择与使用:阐述Python爬虫优劣势

作为专业爬虫ip方案解决服务商&#xff0c;我们每天都面对着大量的数据采集任务需求。在众多的爬虫工具中&#xff0c;Python爬虫凭借其灵活性和功能强大而备受青睐。本文将为大家分享Python爬虫在市场上的优势与劣势&#xff0c;帮助你在爬虫业务中脱颖而出。 一、优势篇 灵活…

初试rabbitmq

rabbitmq的七种模式 Hello word 客户端引入依赖 <!--rabbitmq 依赖客户端--><dependency><groupId>com.rabbitmq</groupId><artifactId>amqp-client</artifactId><version>5.8.0</version></dependency> 生产者 imp…

相对于多进程,你真的知道为什么要使用多线程吗(C/C++多线程编程)

目录 前言 线程VS进程 POSIX线程库的使用 线程创建 线程等待 线程分离 线程状态 可结合态线程实例 分离态线程实例 线程退出 线程的同步与互斥 同步互斥的概念 互斥锁&#xff08;互斥&#xff09; 互斥锁的使用步骤 总结说明 信号量 信号量的使用步骤 条件变…

数据包如何游走于 Iptables 规则之间?

在前文《Linux路由三大件》中&#xff0c;我们提到了 iptables 可以修改数据包的特征从而影响其路由。这个功能无论是传统场景下的 防火墙&#xff0c;还是云原生场景下的 服务路由&#xff08;k8s service&#xff09;、网络策略(calico network policy) 等都有依赖。 虽然业…