【后端必看】Redis 最佳实践

news2024/11/23 16:45:02

文章目录

  • 1. Redis 键值设计
    • 1.1 优雅的 key 结构
    • 1.2 拒绝 BigKey
      • BigKey的危害
      • 如何发现BigKey
        • ①redis-cli --bigkeys
        • ② scan 扫描
        • ③第三方监控
        • ④网络监控
      • 如何删除 BigKey
    • 1.3 恰当的数据类型
      • 总结:
  • 2. 批处理优化
  • 3. 服务器端优化-持久化配置
  • 4. 服务器端优化-慢查询优化
    • 4.1 什么是慢查询
    • 4.2 如何查看慢查询
  • 5. 服务器端优化-命令及安全配置
  • 6. 服务器端优化- Redis 内存划分和内存配置
  • 7. 服务器端集群优化-集群还是主从


在这里插入图片描述

1. Redis 键值设计

1.1 优雅的 key 结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:
key
这样设计的好处:

  • 可读性强
  • 避免 key 冲突
  • 方便管理
  • 更节省内存: key 是 String 类型,底层编码包含int、embstr 和r aw 三种。embstr 在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为 raw 模式存储,在 raw 模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储 SDS 内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

1.2 拒绝 BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令
image-20220521124650117.png
推荐值:

  • 单个 key 的 value 小于10KB
  • 对于集合类型的 key,建议元素数量小于1000

BigKey的危害

  • 网络阻塞
    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis阻塞
    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
  • CPU压力
    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

如何发现BigKey

①redis-cli --bigkeys

利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
命令:redis-cli -a 密码 --bigkeys
image-20220521133359507.png

② scan 扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
image-20220521133703245.png
scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组
Redis 实战-扫描 bigKey

③第三方监控

  • 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
  • https://github.com/sripathikrishnan/redis-rdb-tools

④网络监控

  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
  • 一般阿里云搭建的云服务器就有相关监控页面

如何删除 BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

  • redis 3.0 及以下版本
    • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
  • Redis 4.0以后
    • Redis在4.0后提供了异步删除的命令:unlink

1.3 恰当的数据类型

注意:对于 hash 类型,entry 不超过 500 时底层使用的 ziplist 数据类型,占用空间小。hash 的 entry 数量超过500时,会使用哈希表而不是ZipList,内存占用较多。

总结:

  • Key的最佳实践
    • 固定格式:[业务名]:[数据名]:[id]
    • 足够简短:不超过44字节
    • 不包含特殊字符
  • Value的最佳实践:
    • 合理的拆分数据,拒绝BigKey
    • 选择合适数据结构
    • Hash结构的entry数量不要超过1000
    • 设置合理的超时时间

2. 批处理优化

3. 服务器端优化-持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

  • 用来做缓存的Redis实例尽量不要开启持久化功能
  • 建议关闭RDB持久化功能,使用AOF持久化
  • 利用脚本定期在slave节点做RDB,实现数据备份
  • 设置合理的rewrite阈值,避免频繁的bgrewrite
  • 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
  • 部署有关建议:
    • Redis实例的物理机要预留足够内存,应对fork和rewrite
    • 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
    • 不要与CPU密集型应用部署在一起
    • 不要与高硬盘负载应用一起部署。例如:数据库、消息队列

4. 服务器端优化-慢查询优化

4.1 什么是慢查询

并不是很慢的查询才是慢查询,而是:在Redis执行时耗时超过某个阈值的命令,称为慢查询。
慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。
1653129590210.png
慢查询的阈值可以通过配置指定:
slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000
慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:
slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000
1653130457771.png

修改这两个配置可以使用:config set命令:
1653130475979.png

4.2 如何查看慢查询

知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取n条慢查询日志
  • slowlog reset:清空慢查询列表

1653130858066.png

5. 服务器端优化-命令及安全配置

安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。
Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.漏洞重现方式:https://cloud.tencent.com/developer/article/1039000
为什么会出现不需要密码也能够登录呢,主要是Redis考虑到每次登录都比较麻烦,所以Redis就有一种ssh免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在redis端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用redis的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是Redis的漏洞在于在不登录的情况下,也能把秘钥送到Linux服务器,从而产生漏洞
漏洞出现的核心的原因有以下几点:

  • Redis未设置密码
  • 利用了Redis的config set命令动态修改Redis配置
  • 使用了Root账号权限启动Redis

所以:如何解决呢?我们可以采用如下几种方案
为了避免这样的漏洞,这里给出一些建议:

  • Redis一定要设置密码
  • 禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
  • bind:限制网卡,禁止外网网卡访问
  • 开启防火墙
  • 不要使用Root账户启动Redis
  • 尽量不是有默认的端口

6. 服务器端优化- Redis 内存划分和内存配置

当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。

有关碎片问题分析
Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题

进程内存问题分析:
这片内存,通常我们都可以忽略不计

缓冲区内存问题分析:
一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。

内存占用说明
数据内存是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题
进程内存Redis主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;这部分内存⼤约⼏兆,在⼤多数⽣产环境中与Redis数据占⽤的内存相⽐可以忽略。
缓冲区内存一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey,可能导致内存溢出。

于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:

  • info memory:查看内存分配的情况

1653132073570.png

  • memory xxx:查看key的主要占用情况

1653132098823.png
接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?
内存缓冲区常见的有三种:

  • 复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb
  • AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
  • 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置

以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题
客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向redis输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区
1653132410073.png
我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个
1、设置一个大小
2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力

7. 服务器端集群优化-集群还是主从

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:

  • 集群完整性问题
  • 集群带宽问题
  • 数据倾斜问题
  • 客户端性能问题
  • 命令的集群兼容性问题
  • lua和事务问题

问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:
大家可以设想一下,如果有几个 slot 不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成 no,即有slot不能使用时,我们的redis集群还是可以对外提供部分服务
1653132740637.png

问题2、集群带宽问题
集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:

  • 插槽信息
  • 集群状态信息

集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题
解决途径:

  • 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。
  • 避免在单个物理机中运行太多Redis实例
  • 配置合适的 cluster-node-timeout 值

问题3、命令的集群兼容性问题
有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis要求我们的key必须落在相同的slot上,然后大量的key同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。

问题4、lua和事务的问题
lua和事务都是要保证原子性问题,如果你的key不在一个节点,那么是无法保证lua的执行和事务的特性的,所以在集群模式是没有办法执行lua和事务的

那我们到底是集群还是主从
单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群。





在这里插入图片描述



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/888053.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot案例-员工管理-分页条件查询

根据页面原型,明确需求 页面原型 需求 查看接口文档 接口文档的链接如下: 【腾讯文档】SpringBoot案例所需文档 https://docs.qq.com/doc/DUkRiTWVaUmFVck9N 思路分析 分页条件查询就时将条件查询的结果进行分页展示,由于有的条件可能设…

问题:RuntimeError: Distributed package doesn‘t have NCCL built in

现象 python在windows环境下dist.init_process_group(backend, rank, world_size)处报错‘RuntimeError: Distributed package doesn’t have NCCL built in’ 原因分析 windows不支持NCCL backend 方法1 import sysif sys.platform "win32":os.environ["…

基于X86六轮差速移动机器人运动控制器设计与实现(一)软件与硬件架构

本文研究的六轮差速移动机器人 (Six-Wheeled Differential Mobile Robot , SWDMR) 为了满足资源站到资源站点对点的物资运输,对机器人的跨越障碍能力 有较高的要求。对比传统的四轮移动机器人,六轮移动机器人能够提供更强的驱动 力&#…

BBS项目day03、首页(前端文章布局、分类布局、标签布局)、个人站点(前后端实现)

一、首页 路由 from django.contrib import admin from django.urls import path, re_path from app01 import views from django.views.static import serve from django.conf import settingsurlpatterns [path(admin/, admin.site.urls),# 注册path(register/, views.reg…

「跑输」大盘!汽车业务收入同比下滑15%?虹软一站式方案收效甚微

作为国内A股市场为数不多的车载视觉交互概念上市公司,虹软科技的半年报表现,并不乐观。 数据显示,2023年上半年,虹软科技实现营业收入34,019.19万元,同比增长29.73%;归属于上市公司股东的净利润5,003.86万元…

力推C语言必会题目终章(完结篇)

W...Y的主页 😊 代码仓库分享 💕 今天是分享C语言必会题目最终章,全部都是硬货,大家都坐好准备开始喽!!! 编写一个函数,计算字符串中含有的不同字符的个数。字符在 ASCII 码范围内…

【深入理解Linux内核锁】三、原子操作

我的圈子: 高级工程师聚集地 我是董哥,高级嵌入式软件开发工程师,从事嵌入式Linux驱动开发和系统开发,曾就职于世界500强企业! 创作理念:专注分享高质量嵌入式文章,让大家读有所得! 文章目录 1、原子操作思想2、整型变量原子操作2.1 API接口2.2 API实现2.2.1 原子变量结…

国家一带一路和万众创业创新的方针政策指引下,Live Market探索跨境产业的创新发展

现代社会,全球经济互联互通,跨境产业也因此而崛起。为了推动跨境产业的创新发展,中国政府提出了“一带一路”和“万众创业、万众创新”的方针政策,旨在促进全球经济的互联互通和创新发展。在这个大环境下,Live Market积…

【24择校指南】华东师范大学计算机考研考情分析

华东师范大学(B) 考研难度(☆☆☆☆) 内容:23考情概况(拟录取和复试分数人数统计)、院校概况、23考试科目、23复试详情、各科目及专业考情分析。 正文2563字,预计阅读:3分钟。 2023考情概况…

Springboot 集成Beetl模板

一、在启动类下的pom.xml中导入依赖&#xff1a; <!--beetl模板引擎--><dependency><groupId>com.ibeetl</groupId><artifactId>beetl</artifactId><version>2.9.8</version></dependency> 二、 配置 beetl需要的Beetl…

【Java转Go】快速上手学习笔记(二)之基础篇二

【Java转Go】快速上手学习笔记&#xff08;二&#xff09;之基础篇一 了解了基本语法、基本数据类型这些使用&#xff0c;接下来我们来讲数组、切片、值传递、引用传递、指针类型、函数、泛型、map、结构体。 目录 数组和切片值传递、引用传递指针类型defer延迟执行函数泛型ma…

c++通过gsop调用基于https的webservice接口总结

ww哦步骤&#xff1a; 第一步&#xff1a;生成头文件 webservice接口一般会有一个对外接口文档。比如&#xff1a;http://www.webxml.com.cn/WebServices/WeatherWebService.asmx?WSDL 问号后面的参数表示WSDL文档&#xff0c;是一个XML文档&#xff0c;看不懂配置没关系&a…

UglifyJS 和JShaman相比有什么不同?都可以进行js混淆加密吗?

UglifyJS 和JShaman相比有什么不同&#xff1f; UglifyJS主要功能是压缩JS代码&#xff0c;减小代码体积&#xff1b;JShaman是专门用于对JS代码混淆加密&#xff0c;目的是让JS代码变的不可读、混淆功能逻辑、加密代码中的隐秘数据或字符&#xff0c;是用于代码保护的。 因此…

linux两台服务器互相备份文件(sshpass + crontab)

crontab crontab是linux系统自带的定时调度软件&#xff0c;可用于设置周期性被执行的指令&#xff0c;一般用在每天的非高峰负荷时间段运行作业&#xff0c;可在无需人工干预的情况下运行作业。支持在一周或一月中的不同时段运行。 crontab命令允许用户提交、编辑或删除相应的…

【HBZ分享】java中的BitSet 与 Redis中的BitMap 与 布隆过滤器

BitMap的存储原理 bitMap他会标识出某个整数是否存在&#xff0c;存在即为1&#xff0c;不存在对应位即为0bitMap是存储int类型的&#xff0c;int 4byte&#xff0c; 1byte 8bit&#xff0c;因此bitMap数组中的每个下标可以标识出32个数字是否存在bitMap相当于一个个小格子&…

【数据结构】二叉树的链式结构的实现 -- 详解

一、前置说明 在学习二叉树的基本操作前&#xff0c;需先要创建一棵二叉树&#xff0c;然后才能学习其相关的基本操作。为了降低大家学习成本&#xff0c;此处手动快速创建一棵简单的二叉树&#xff0c;快速进入二叉树操作学习。 typedef char BTDataType;typedef struct Binar…

管理类联考——逻辑——真题篇——按知识分类——汇总篇——一、形式逻辑——模态——-句式转换+性质

文章目录 第三节 模态命题-句式转换性质题-模态命题-句式转换性质-句式转换-逻辑转换&#xff1a;①不一定不可能&#xff1b;②不一定可能不未必。句式转换-语文转换&#xff1a;①一定不可能不必然&#xff1b;②一定不不可能必然不。性质-两命题间的关系-包含&#xff1a;①…

c语言——计算两个数的乘积

//计算两个数的乘积 #include<stdio.h> #include<stdlib.h> int main() {double firstNumber,secondNumber,product;printf("两个浮点数&#xff1a;");scanf("%lf,%lf",&firstNumber,&secondNumber);productfirstNumber*secondNumber…

shell scripts 学习记录

shell scripts 学习记录 1. 环境变量的使用2. Shell中的数组使用Array关联数组 (理解为python中的字典) 3. shell中的基本运算符4. shell 中流程控制语法case...esac使用 5. 函数定义与调用5.1 带返回值的函数5.2 带传参数的函数 6. shell 中的输入/输出重定向6.1 输出重定向6.…

糖尿病视网膜病变,黄斑病变,年龄相关检测研究(Matlab代码)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…