代码随想录算法训练营第58天|动态规划part15|392.判断子序列、115.不同的子序列

news2025/4/18 1:32:49

代码随想录算法训练营第58天|动态规划part15|392.判断子序列、115.不同的子序列

392.判断子序列

392.判断子序列

思路:

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础。

动态规划五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

注意这里是判断s是否为t的子序列。即t的长度是大于等于s的。

  1. 确定递推公式

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

  • if (s[i - 1] == t[j - 1])
    t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义)

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

  1. dp数组如何初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。

dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。

vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));

  1. 确定遍历顺序

同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

在这里插入图片描述

  1. 举例推导dp数组

在这里插入图片描述

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。

代码:

python

class Solution(object):
    def isSubsequence(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: bool
        """
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
       
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = dp[i][j-1]
        
        return dp[-1][-1] == len(s)

115.不同的子序列

115.不同的子序列

思路:

动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

  1. 确定递推公式

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

  1. dp数组如何初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

在这里插入图片描述

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
  1. 确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

在这里插入图片描述

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

for (int i = 1; i <= s.size(); i++) {
    for (int j = 1; j <= t.size(); j++) {
        if (s[i - 1] == t[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
        } else {
            dp[i][j] = dp[i - 1][j];
        }
    }
}
  1. 举例推导dp数组

以s:“baegg”,t:"bag"为例,推导dp数组状态如下:

在这里插入图片描述

代码:

python

class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/883962.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenCV-Python中的图像处理-傅里叶变换

OpenCV-Python中的图像处理-傅里叶变换 傅里叶变换Numpy中的傅里叶变换Numpy中的傅里叶逆变换OpenCV中的傅里叶变换OpenCV中的傅里叶逆变换 DFT的性能优化不同滤波算子傅里叶变换对比 傅里叶变换 傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变…

BGP+MPLS+VPN

实验要求及拓扑 一、实验思路 1.先中间R2-R4区域可通 2.在R2、R4上创建两个虚拟空间 3.将R2上的R2和R1、R6直连接口关联到对应虚拟空间、将R4上的R4和R5、R7直连接口关联到对应虚拟空间&#xff0c;然后再配置IP地址 4.R2和R4BGP建邻 5.R2和R4邻居间端建立一个VPNV4的关系&…

包管理工具 nvm npm nrm yarn cnpm npx pnpm详解

包管理工具 nvm npm yarn cnpm npx pnpm npm、cnpm、yarn、pnpm、npx、nvm的区别&#xff1a;https://blog.csdn.net/weixin_53791978/article/details/122533843 npm、cnpm、yarn、pnpm、npx、nvm的区别&#xff1a;https://blog.csdn.net/weixin_53791978/article/details/1…

SHELL 基础 SHELL注释 及 执行SHELL脚本的四种方法

SHELL 脚本编写规范 &#xff1a; 脚本开头 &#xff1a; # 脚本第一行 &#xff1a; #! /bin/bash 或 #!/bin/sh &#xff08; 脚本解释器 &#xff09; # 程序段开头需要加 版本版权信息 &#xff0c;例如 &#xff1a; # Date 创建日期 # Author : 作者 # …

【微服务】一文了解 Nacos

一文了解 Nacos Nacos 在阿里巴巴起源于 2008 2008 2008 年五彩石项目&#xff08;完成微服务拆分和业务中台建设&#xff09;&#xff0c;成长于十年双十一的洪峰考验&#xff0c;沉淀了简单易用、稳定可靠、性能卓越的核心竞争力。 随着云计算兴起&#xff0c; 2018 2018 20…

基于视觉的仪表检测/指针仪表自动识别读数——论文解读

中文论文题目&#xff1a;基于关键点检测的指针仪表读数识别算法研究与应用 英文论文题目&#xff1a; Research and Application of PointerMeter Reading Recognition AlgorithmBased on Key Point Detection 部分摘要&#xff1a; 本文在总结概括了关键点检测和传统指针仪表…

驱蚊酯、避蚊胺、派卡瑞丁、柠檬桉醇驱蚊效果和剂量在不同作用环境下的测试于验证

摘要 随着全球气候的变化和人类活动的不断增加&#xff0c;蚊虫成为了一种广泛存在且对人类健康造成威胁的害虫。蚊虫不仅令人感到不适&#xff0c;还可能传播一系列严重的传染病&#xff0c;如疟疾、登革热和寨卡病毒等。为了应对这一问题&#xff0c;寻找高效且安全的驱蚊方…

Codeforces Round 893 (Div. 2) E1. Rollbacks (Easy Version)

Codeforces Round 893 (Div. 2) E1. Rollbacks (Easy Version)思路&#xff1a;单点更新离线莫队区间查询区间不同数字个数栈保留last_state 源代码&#xff1a; #include<cstdio> #include<cmath> #include<algorithm> #include <stack> using names…

2023年雷军演讲读后感

文章目录 概述坚持梦想&#xff0c;拆解目标多维学习&#xff0c;掌握方法突破认知&#xff0c;深度探索及时总结&#xff0c;调整方向总结 概述 2023年8月14日晚7点&#xff0c;雷军进行了他个人的第四次年度演讲&#xff0c;大家都看了吗&#xff1f; 本次演讲的主题是&quo…

SRCNN:Image Super-Resolution Using Deep Convolutional Networks

Some words&#xff1a; 这里是一些阅读文章的笔记&#xff0c;这篇文章是第一篇将深度学习应用于超分领域的文章&#xff0c;具有较为重要的意义。 link: https://arxiv.org/pdf/1501.00092.pdf &#xff08;一&#xff09;Abstract&#xff1a; 我们提出一个对于单图像超分…

智慧工地一体化云平台源码:监管端、工地端、危大工程、智慧大屏、物联网、塔机、吊钩、升降机

智慧工地解决方案依托计算机技术、物联网、云计算、大数据、人工智能、VR&AR等技术相结合&#xff0c;为工程项目管理提供先进技术手段&#xff0c;构建工地现场智能监控和控制体系&#xff0c;弥补传统方法在监管中的缺陷&#xff0c;最终实现项目对人、机、料、法、环的全…

SDXL1.0大模型安装与使用

个人网站&#xff1a; 文章目录 前言一、模型下载使用&#xff08;简单体验&#xff09;二、模型下载使用&#xff08;繁琐版&#xff09;三、ComfyUI 前言 使用 Stable Diffusion XL&#xff0c;您可以使用较短的提示创建描述性图像&#xff0c;并在图像中生成文字。该模型在…

【5款登录验证校验】基于jquery实现的5款登录验证码组件(附完整源码)

文章目录 写在前面涉及知识点1、随机字母验证码1.1 效果1.2 实现源码 2、数字运算验证码2.1 效果2.2 实现源码 3、滑块验证码3.1 效果3.2 实现源码 4、图片补全验证码4.1 效果4.2 实现源码 5、顺序点选验证码5.1 效果5.2 实现源码 6、源码分享6.1 百度网盘6.2 123网盘6.3 邮箱留…

cs231n assignment3 q1Network Visualization

文章目录 嫌啰嗦直接看代码Q1 :Network Visualizationcompute_saliency_maps题面解析代码输出 make_fooling_image题面解析代码输出 class_visualization_update_step题面解析代码输出 结语 嫌啰嗦直接看代码 Q1 :Network Visualization compute_saliency_maps 题面 这部分的…

【校招VIP】java语言考点之ConcurrentHashMap1.7和1.8

考点介绍&#xff1a; ConcurrentHashMap是JAVA校招面试的热门考点&#xff0c;主要集中在1.7和1.8的底层结构和相关的性能提高。 理解这个考点要从map本身的并发问题出发&#xff0c;再到hashTable的低性能并发安全&#xff0c;引申到ConcurrentHashMap的分块处理。同时要理解…

2023牛客暑期多校训练营9-B Semi-Puzzle: Brain Storm

2023牛客暑期多校训练营9-B Semi-Puzzle: Brain Storm https://ac.nowcoder.com/acm/contest/57363/B 文章目录 2023牛客暑期多校训练营9-B Semi-Puzzle: Brain Storm题意解题思路代码 题意 解题思路 欧拉定理 a b ≡ { a b % φ ( p ) g c d ( a , p ) 1 a b g c d ( a ,…

认识excel篇3之数据的有效性(数据验证)

数据有效性不仅能够对单元格的输入数据进行条件限制&#xff0c;还可以在单元格中创建下拉列表菜单方便用户选择输入。如果没有做数据验证&#xff0c;单元格内默认可以输入任意类型的数据。数据验证就是限制单元格输入数据&#xff08;必须输入符合要求的才能输入&#xff09;…

OpenCV-Python中的图像处理-视频分析

OpenCV-Python中的图像处理-视频分析 视频分析Meanshift算法Camshift算法光流Lucas-Kanade Optical FlowDense Optical Flow 视频分析 学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象: Meanshift算法 Meanshift 算法的基本原理是和很简单的。假设我们有一堆…

使用Logstash将数据从MySQL同步至Elasticsearch(有坑)

文章目录 一、准备工作1、安装elasticSearchkibana2、安装MySQL3、安装Logstash 二、全量同步1、准备MySQL数据与表2、上传mysql-connector-java.jar3、启动Logstash4、修改logstash.conf文件5、修改full_jdbc.sql文件6、打开Kibana创建索引和映射7、重启logstash进行全量同步8…

linux 系统中vi 编辑器和库的制作和使用

目录 1 vim 1.1 vim简单介绍 1.2 vim的三种模式 1.3 vim基本操作 1.3.1命令模式下的操作 1.3.2 切换到文本输入模式 1.3.3 末行模式下的操作 2 gcc编译器 2.1 gcc的工作流程 2.2 gcc常用参数 3 静态库和共享&#xff08;动态&#xff09;库 3.1库的介绍 3.2静态…