OpenCV-Python中的图像处理-视频分析

news2025/1/21 0:46:17

OpenCV-Python中的图像处理-视频分析

  • 视频分析
    • Meanshift算法
    • Camshift算法
    • 光流
      • Lucas-Kanade Optical Flow
      • Dense Optical Flow

视频分析

学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象:

Meanshift算法

Meanshift 算法的基本原理是和很简单的。假设我们有一堆点(比如直方
图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗
口移动到最大灰度密度处(或者是点最多的地方)。如下图所示:
在这里插入图片描述
初始窗口是蓝色的“C1”,它的圆心为蓝色方框“C1_o”,而窗口中所有点质心却是“C1_r”(小的蓝色圆圈),很明显圆心和点的质心没有重合。所以移动圆心 C1_o 到质心 C1_r,这样我们就得到了一个新的窗口。这时又可以找到新窗口内所有点的质心,大多数情况下还是不重合的,所以重复上面的操作:将新窗口的中心移动到新的质心。就这样不停的迭代操作直到窗口的中心和其所包含点的质心重合为止(或者有一点小误差)。按照这样的操作我们的窗口最终会落在像素值(和)最大的地方。如上图所示“C2”是窗口的最后位址,我们可以看出来这个窗口中的像素点最多。
要在 OpenCV 中使用 Meanshift 算法首先我们要对目标对象进行设置,
计算目标对象的直方图,这样在执行 meanshift 算法时我们就可以将目标对
象反向投影到每一帧中去了。另外我们还需要提供窗口的起始位置。在这里我
们值计算 H( Hue)通道的直方图,同样为了避免低亮度造成的影响,我们使
用函数 cv2.inRange() 将低亮度的值忽略掉。

import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')

ret,frame = cap.read()

# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)

# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]

hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)

term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)

while(1):
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)

        ret, track_window = cv2.meanShift(dst, track_window, term_crit)

        x,y,w,h = track_window
        img2 = cv2.rectangle(frame, (x,y), (x+w, y+h), 255, 2)

        k = cv2.waitKey(60)&0xFF
        if k == 27:
            break
        else:
            cv2.imshow('img', img2)
    else:
        break

cap.release()
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

Camshift算法

与 Meanshift 基本一样,但是返回的结果是一个带旋转角度的矩形以及这个矩形的参数(被用到下一次迭代过程中)。

import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')

# take first frame of the video
ret, frame = cap.read()

# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)
# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by at least 1 pt
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )

while(1):
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
        # apply camshift to get the new location
        ret, track_window = cv2.CamShift(dst, track_window, term_crit)
        # Draw it on image
        pts = cv2.boxPoints(ret)
        pts = np.int0(pts)
        img2 = cv2.polylines(frame,[pts],True, 255,2)
        k = cv2.waitKey(30) & 0xff
        if k == 27:
            break
        else:
            cv2.imshow('img2',img2)
    else:
        cap.release()
        cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

光流

Lucas-Kanade Optical Flow

  • 光流的概念以及 Lucas-Kanade 光流法
  • 函数 cv2.calcOpticalFlowPyrLK() 对图像中的特征点进行跟踪
import numpy as np
import cv2

cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')

# params for Shi-Tomasi corner detection
feature_params = dict(maxCorners = 100,
                    qualityLevel = 0.3,
                    minDistance = 7,
                    blockSize = 7)

# parameters for lucas kanade optical flow
# maxLevel 为使用的图像金字塔层数
lk_params = dict(winSize = (15,15),
                maxLevel = 2,
                criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0, 255, (100, 3))

# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)

# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)

while(1):
    ret, frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # calculate optical flow 能够获取点的新位置
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

    # Select good points
    good_new = p1[st==1]
    good_old = p0[st==1]

    # draw the tracks
    for i,(new, old) in enumerate(zip(good_new, good_old)):
        a,b = new.ravel()
        c,d = old.ravel()
        mask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2)
        frame = cv2.circle(frame, (int(a), int(b)), 5, color[i].tolist(), -1)
    img = cv2.add(frame, mask)
    cv2.imshow('frame', img)
    k = cv2.waitKey(30) & 0xFF
    if k == 27:
        break
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1, 1, 2)

cv2.destroyAllWindows()
cap.release()

在这里插入图片描述

Dense Optical Flow

import numpy as np
import cv2 as cv


cap = cv.VideoCapture('./resource/opencv/video/vtest.avi')
ret, frame1 = cap.read()
prvs = cv.cvtColor(frame1, cv.COLOR_BGR2GRAY)
hsv = np.zeros_like(frame1)
hsv[..., 1] = 255
while(1):
    ret, frame2 = cap.read()
    if not ret:
        print('No frames grabbed!')
        break
    next = cv.cvtColor(frame2, cv.COLOR_BGR2GRAY)
    flow = cv.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
    mag, ang = cv.cartToPolar(flow[..., 0], flow[..., 1])
    hsv[..., 0] = ang*180/np.pi/2
    hsv[..., 2] = cv.normalize(mag, None, 0, 255, cv.NORM_MINMAX)
    bgr = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
    cv.imshow('frame2', bgr)
    k = cv.waitKey(30) & 0xff
    if k == 27:
        break
    elif k == ord('s'):
        cv.imwrite('./resource/opencv/video/opticalfb.png', frame2)
        cv.imwrite('./resource/opencv/video/opticalhsv.png', bgr)
        prvs = next
cv.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/883939.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Logstash将数据从MySQL同步至Elasticsearch(有坑)

文章目录 一、准备工作1、安装elasticSearchkibana2、安装MySQL3、安装Logstash 二、全量同步1、准备MySQL数据与表2、上传mysql-connector-java.jar3、启动Logstash4、修改logstash.conf文件5、修改full_jdbc.sql文件6、打开Kibana创建索引和映射7、重启logstash进行全量同步8…

linux 系统中vi 编辑器和库的制作和使用

目录 1 vim 1.1 vim简单介绍 1.2 vim的三种模式 1.3 vim基本操作 1.3.1命令模式下的操作 1.3.2 切换到文本输入模式 1.3.3 末行模式下的操作 2 gcc编译器 2.1 gcc的工作流程 2.2 gcc常用参数 3 静态库和共享(动态)库 3.1库的介绍 3.2静态…

Dockerfile自定义镜像

文章目录 Dockerfile自定义镜像镜像结构Dockerfile语法构建java项目 小结 Dockerfile自定义镜像 常见的镜像在DockerHub就能找到,但是我们自己写的项目就必须自己构建镜像了。 而要自定义镜像,就必须先了解镜像的结构才行。 镜像结构 镜像是将应用程序及…

PyTorch基础(16)-- torch.gather()方法

一、前言 在实现DQN的过程中,torch.gather()这个方法引起了我的注意,原因有二:1)这个函数在我硕士期间很少遇见,用到的次数更是少之又少;2)torch.gather()这个方法是如何使用的呢,以…

[HZNUCTF 2023 preliminary] 2023杭师大校赛(初赛) web方向题解wp 全

ezflask 先看题目,应该是模板注入(SSTI),输入{{7*‘7’}}直接报错误。 发现模板是反序输出的,怪不得不能直接输入{{}}。 输入}}‘7’*7{{返回777777,是jinja2 //直接手打,无所谓我是怨种 ?nam…

Mysql中使用存储过程插入decimal和时间数据递增的模拟数据

场景 Mysql插入数据从指定选项中随机选择、插入时间从指定范围随机生成、Navicat使用存储过程模拟插入测试数据: Mysql插入数据从指定选项中随机选择、插入时间从指定范围随机生成、Navicat使用存储过程模拟插入测试数据_mysql循环插入随机数据_霸道流氓气质的博客…

【第三阶段】kotlin语言中的先决条件函数

用于函数内部判断异常,节省开发 1.checkNotNull()如果传入为null则抛出异常 fun main() {var name:String?nullcheckNotNull(name) }执行结果 2.requireNotNull ()如果传入为null则抛出异常 fun main() {var name:String?nullrequireNot…

基于PSO-KELM的时间序列数据预测(含对比实验)

前段时间有粉丝私信想让我出一期对时间序列预测的文章,所以今天它来了。 时间序列数据,如股指价格,具有波动性、非线性和突变的特点,对于这类数据的预测往往需要可靠强健的预测模型,而传统的机器学习算法如SVM、BP等…

详解RFC 793文档-3

3.4 建立连接 三次握手用来建立连接,这个过程通常由一个TCP发起,并由另一个TCP响应。如果两个TCP同时启动该过程,该过程也可以工作。这说明客户端和服务器可以同时发起连接请求,且能够连接成功。当同时尝试连接时,每个TCP在发送自己的SYN后接收到一个不携带任何ACK确认的…

分布式 - 服务器Nginx:一小时入门系列之代理缓冲与缓存

官方文档:https://nginx.org/en/docs/http/ngx_http_proxy_module.html 1. 代理缓冲 proxy_buffer 代理缓冲用于临时存储从后端服务器返回的响应数据。通过使用代理缓冲,Nginx可以在接收完整的响应后再将其发送给客户端,从而提高性能和效率…

从零实现kv存储V2.0

在V1.0版本,我们实现了基于array的kv存储引擎。本文继续完善,增加rbtree、hash、skiptable引擎。 实际上,在框架确定的基础上,其他的引擎只需要添加接口即可。 一、架构设计 二、具体实现 2.1 引擎层 //---------------------…

第14集丨Vue2 基础 —— 生命周期

目录 一、引子1.1 实现一1.2 一个死循环的写法1.3 mounted实现 二、生命周期2.1 概念2.2 常用的生命周期钩子2.3 关于销毁Vue实例注意点2.4 vm的一生(vm的生命周期)2.5 生命周期图示 每个 Vue 实例在被创建时都要经过一系列的初始化过程——例如,需要设置数据监听、…

轻量级自动化测试框架WebZ

一、什么是WebZ WebZ是我用Python写的“关键字驱动”的自动化测试框架,基于WebDriver。 设计该框架的初衷是:用自动化测试让测试人员从一些简单却重复的测试中解放出来。之所以用“关键字驱动”模式是因为我觉得这样能让测试人员(测试执行人员…

企业权限管理(十三)-用户关联角色操作

用户关联角色操作 从前台发送请求 <a href"${pageContext.request.contextPath}/user/findUserByIdAndAllRole.do?id${user.id}" class"btn bg-olive btn-xs">添加角色</a>查询用户以及用户可以添加的角色 usercontroller //查询用户以及用…

k8s 自身原理之 Service

好不容易&#xff0c;终于来到 k8s 自身的原理之 关于 Service 的一部分了 前面我们用 2 个简图展示了 pod 之间和 pod 与 node 之间是如何通信息的&#xff0c;且通信的数据包是不会经过 NAT 网络地址转换的 那么 Service 又是如何实现呢&#xff1f; Service 我们知道是用…

网神 SecGate 3600 防火墙任意文件上传漏洞复现

0x01 产品简介 网神SecGate3600下一代极速防火墙&#xff08;NSG系列&#xff09;是基于完全自主研发、经受市场检验的成熟稳定网神第三代SecOS操作系统 并且在专业防火墙、VPN、IPS的多年产品经验积累基础上精心研发的高性能下一代防火墙 专门为运营商、政府、军队、教育、大型…

图扑数字孪生智慧乡村综合管控平台

数字乡村是伴随网络化、信息化和数字化在农业农村经济社会发展中的应用&#xff0c;既是乡村振兴的战略方向&#xff0c;也是建设数字中国的重要内容。为了进一步提升乡村治理智能化、专业化水平&#xff0c;解决建设顶层缺失、数据孤岛等问题&#xff0c;数字孪生技术被广泛应…

工控机防病毒

2月3日&#xff0c;作为全球最大的半导体制造设备和服务供应商&#xff0c;美国应用材料公司&#xff08;Applied Materials&#xff09;表示&#xff0c;有一家上游供应商遭到勒索软件攻击&#xff0c;由此产生的关联影响预计将给下季度造成2.5亿美元&#xff08;约合人民币17…

使用MAT分析OOM问题

OOM和内存泄漏在我们的工作中&#xff0c;算是相对比较容易出现的问题&#xff0c;一旦出现了这个问题&#xff0c;我们就需要对堆进行分析。 一般情况下&#xff0c;我们生产应用都会设置这样的JVM参数&#xff0c;以便在出现OOM时&#xff0c;可以dump出堆内存文件&#xff…

JavaScript进阶 第二天

深入对象内置构造函数 一. 深入对象 创建对象三种方式构造函数实例成员&静态成员 1.1 创建对象三种方式 ① 利用对象字面量创建对象 const o {name: 哈哈 } ② 利用new Object 创建对象 const o new Object({ name: 哈哈 }) ③ 构造函数创建对象 1.2 构造函数 …