时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测

news2025/1/23 17:53:13

时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测

目录

    • 时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元多输入单输出时间序列预测
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元预测"是一个复杂的算法模型,下面对其进行解释:
WOA-CNN-BiGRU鲸鱼算法:这是一种基于鲸鱼优化算法的神经网络优化算法,用于优化神经网络的参数。通过卷积神经网络提取特征,然后通过双向门控循环单元处理序列数据中的长期依赖关系,最后将处理后的数据进行预测,输出一个连续值结果。通过鲸鱼优化算法对神经网络的参数进行优化,提高预测准确率。

程序设计

  • 完整源码和数据获取方式1:私信博主回复WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/882523.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

怎样让音频速度变慢?请跟随以下方法进行操作

怎样让音频速度变慢&#xff1f;在会议录音过程中&#xff0c;经常会遇到主讲人语速过快&#xff0c;导致我们无法清晰听到对方说的内容。如果我们能够减慢音频速度&#xff0c;就能更好地记录对方的讲话内容。此外&#xff0c;在听到快速播放的外语或方言时&#xff0c;我们也…

部署工业物联网可以选择哪些通信方案?

部署工业物联网有诸多意义&#xff0c;诸如提升生产效率&#xff0c;降低管理成本&#xff0c;保障生产品质稳定&#xff0c;应对长期从业劳动力变化趋势等。针对不同行业、场景&#xff0c;工业物联网需要选择不同的通信方案&#xff0c;以达到成本和效益的最佳平衡。本篇就简…

12 正则表达式 | HTTP协议相关介绍

文章目录 正则表达式re模块最基础操作&#xff08;匹配开头&#xff09;匹配单个字符匹配多个字符匹配开头结尾匹配分组对于group的理解r的作用re 模块高级用法compilesearchfindall易错点 sub直接替换函数替换 split 根据匹配进行切割字符串&#xff0c;并返回一个列表 python…

【Android Framework (十二) 】- 智能硬件设备开发

文章目录 前言智能硬件的定义与应用智能硬件产品开发流程智能硬件开发所涉及的技术体系概述关于主板选型主板CPU芯片的选择关于串口通信 总结 前言 针对我过往工作经历&#xff0c;曾在一家智能科技任职Android开发工程师&#xff0c;简单介绍下关于任职期间接触和开发过的一些…

文心一言 VS 讯飞星火 VS chatgpt (76)-- 算法导论7.3 1题

一、如果用go语言&#xff0c;为什么我们分析随机化算法的期望运行时间&#xff0c;而不是其最坏运行时间呢? 文心一言&#xff1a; 在分析算法的性能时&#xff0c;期望运行时间是一个重要的指标&#xff0c;它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的…

【Linux】—— 进程程序替换

目录 序言 &#xff08;一&#xff09;替换原理 1、进程角度——见见猪跑 1️⃣ 认识 execl 函数 2、程序角度——看图理解 &#xff08;二&#xff09;替换函数 1、命名理解 2、函数理解 1️⃣execlp 2️⃣execv 3️⃣execvp 4️⃣execle 5️⃣execve 6️⃣execve…

【C++】C++入门基础详解(1)

本篇内容要分享的是C的基础内容&#xff0c;C的诞生简单的说就是为了填补C语言中的语法坑&#xff0c;同时对比C语言来说增添很多便捷的语法规则&#xff0c;使用起来比C语言便捷不少&#xff0c;但是学习难度也大大增强&#xff0c;不过难度是成线性增长&#xff0c;可以一步一…

编译工具:CMake(三)| 最简单的实例升级

编译工具&#xff1a;CMake&#xff08;三&#xff09;| 最简单的实例升级 前言过程语法解释ADD_SUBDIRECTORY 指令 如何安装目标文件的安装普通文件的安装&#xff1a;非目标文件的可执行程序安装(比如脚本之类)目录的安装 修改 Helloworld 支持安装测试 前言 本篇博客的任务…

H3C交换机MIB库

非常齐全的官方MIB库 为Zabbix监控华三交换机提供诸多方便。 如下信息提供下载链接和下载账号: MIB清单下载:交换机-新华三集团-H3C MIB库:MIB-新华三集团-H3C

Python Opencv实践 - 图像透射变换

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols img.shape[:2] print(rows,cols)#opencv中的透射变换&#xff0c;需要一个3x3透射变换矩阵 #这个矩阵可以通过…

基于IDE Eval Resetter延长IntelliJ IDEA等软件试用期的方法(包含新版本软件的操作方法)

本文介绍基于IDE Eval Resetter插件&#xff0c;对集成开发环境IntelliJ IDEA等JetBrains公司下属的多个开发软件&#xff0c;加以试用期延长的方法。 我们这里就以IntelliJ IDEA为例&#xff0c;来介绍这一插件发挥作用的具体方式。不过&#xff0c;需要说明使用IDE Eval Rese…

Spring Boot+Redis 实现消息队列实践示例

Spring BootRedis 实现一个轻量级的消息队列 文章目录 Spring BootRedis 实现一个轻量级的消息队列0.前言1.基础介绍2.步骤2.1. 引入依赖2.2. 配置文件2.3. 核心源码 4.总结答疑 5.参考文档6. Redis从入门到精通系列文章 0.前言 本文将介绍如何利用Spring Boot与Redis结合实现…

二自由度机械臂的gazebo仿真

一、创建ros软件包 #1、创建工作空间 mkdir 2d_robot_ws cd 2d_robot_ws mkdir src cd src catkin_init_workspace #2、编译工作空间 cd .. catkin_make #3、创建软件包 catkin_create_pkg 2d_robot std_msgs rospy roscpp二、创建模型文件 1、编写urdf模型文件 在2d_robot_…

科研经费的来源有哪些?

目前&#xff0c;高校在我国科技创新中发挥着越来越重要的作用&#xff0c;自然高校获得经费也越来越多。一所高校的科研经费充足&#xff0c;越有利于科研学术水平的提高。那么科研经费的来源有哪些呢&#xff1f; 1. 国家拨款 对于高校的科研发展享有国家的重点支持。近年来…

人工智能原理(3)

目录 一、搜索策略 1、引言 2、盲目搜索 3、启发式搜索 二、基于状态空间图搜索技术 1、图搜索基本概念 2、状态空间搜索 3、一般的图搜索算法 三、盲目搜索 1、广度优先搜索 2、深度优先搜索 3、有界深度搜索和迭代加深搜索 四、启发式算法 1、启发性信息和评估…

容器技术发展和编排技术演进之路

目录 Jail 时代 1979 年 贝尔实验室发明 chroot 2000 年 FreeBSD 4.0 发行 FreeBSD Jail 2001 年 Linux VServer 发行 2004 年 Solaris Containers 发行 云时代 2006 年 google 推出 Process Containers 2008 年 LXC 推出 2011 年 CloudFoundry 推出 Warden 2013 年 LMCTFY 启动…

JavaScript 【DOM】

【DOM】 原创内容&#xff0c;转载请注明出处&#xff01; 一、DOM基本概念 DOM&#xff08;Document Object Model&#xff0c;文档对象模型&#xff09;是 JavaScript 操作 HTML 文档的接口&#xff0c;使文档操作变得非常优雅、简便。 DOM 最大的特点就是将 HTML 文档表示…

Pycharm找不到Conda可执行文件路径(Pycharm无法导入Anaconda已有环境)

在使用Pycharm时发现无法导入Anaconda创建好的环境&#xff0c;会出现找不到Conda可执行文件路径的问题。 解决 在输入框内输入D:\anaconda3\Scripts\conda.exe&#xff0c;点击加载环境。 注意前面目录是自己Anaconda的安装位置&#xff0c;之后就可以找到Anaconda的现有环…

STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器

只用STM32单片机SD卡耳机插座&#xff0c;实现播放MP3播放器&#xff01; 看过很多STM32软解MP3的方案&#xff0c;即不通过类似VS1053之类的解码器芯片&#xff0c;直接用STM32和软件库解码MP3文件&#xff0c;通常使用了labmad或者Helix解码库实现&#xff0c;Helix相对labm…

Mariadb高可用MHA

本节主要学习了Mariadb高可用MHA的概述&#xff0c;案例如何构建MHA 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、概述 1、概念 MHA&#xff08;MasterHigh Availability&#xff09;是一套优秀的MySQL高可用环境下故障切换和主从复制的软件。…