GPT垂直领域相关模型 现有的开源领域大模型

news2024/11/23 21:23:43

对于ToC端来说,广大群众的口味已经被ChatGPT给养叼了,市场基本上被ChatGPT吃的干干净净。虽然国内大厂在紧追不舍,但目前绝大多数都还在实行内测机制,大概率是不会广泛开放的(毕竟,各大厂还是主盯ToB、ToG市场的,从华为在WAIC的汇报就可以看出)。而对于ToB和ToG端来说,本地化部署、领域or行业内效果绝群、国产化无疑就成为了重要的考核指标。

个人觉得垂直领域大模型或者说大模型领域化、行业化才是大模型落地的核心要素。恰好前几天ChatLaw(一款法律领域大模型产品)也是大火,当时也是拿到了一手内测资格测试了一阵,也跟该模型的作者聊了很久。正好利用周末的时间,好好思考、梳理、汇总了一些垂直领域大模型内容。

文章内容将从ChatLaw展开到垂直领域大模型的一些讨论最后汇总一下现有的开源领域大模型

聊聊对ChatLaw的看法

ChatLaw的出现,让我更加肯定未来大模型落地需要具有领域特性。相较于目前领域大模型,ChatLaw不仅仅是一个模型,而是一个经过设计的大模型领域产品,已经在法律领域具有很好的产品形态。

Paper: https://arxiv.org/pdf/2306.16092.pdf

Github: https://github.com/PKU-YuanGroup/ChatLaw官网: https://www.chatlaw.cloud/

可能会有一些质疑,比如:不就是一个langchain吗?法律领域它能保证事实性问题吗?等等等。但,我觉得在否定一件事物的前提,是先去更深地了解它

ChatLaw共存在两种模式:普通模型和专业模型。普通模式就是仅基于大模型进行问答。

而专业模式是借助检索的手段,对用户查询进行匹配从知识库中筛选出合适的证据,再根据大模型汇总能力,得到最终答案。

由于专业模式,借助了知识库的内容,也会使得用户得到的效果更加精准。而在专业版中,ChatLaw制定了一整套流程,如上图所示,存在反问提示进行信息补全,用户信息确认、相似案例检索、建议汇总等。

作者@JessyTsui(知乎) 也说过,其实ChatLaw=ChatLaw LLM + keyword LLM + laws LLM。而keyword LLM真的让我眼前一亮的,之前对关键词抽取的理解,一直是从文本中找到正确的词语,在传统检索中使用同义词等方法来提高检索效果。而keyword LLM利用大模型生成关键词,不仅可以找到文本中的重点内容,还可以总结并释义出一些词。使得整个产品在检索证据内容时,效果更加出色。

深度学习自然语言处理, 垂直领域大模型的一些思考及开源模型汇总

同时,由于不同模型对不同类型问题解决效果并不相同,所以在真正使用阶段,采用HuggingGPT作为调度器的方式,在每次用户请求的时候去选择调用更加适配的模型。也就是让适合的模型做更适合的事情

聊聊对垂直领域大模型的看法

现在大模型的使用主要就是两种模型,第一种是仅利用大模型本身解决用户问题;第二种就是借助外部知识来解决用户问题。而我个人觉得是“借助外部知识进行问答”才是未来,虽然会对模型推理增加额外成本,但是外部知识是缓解模型幻觉的有效方法。

但随着通用大模型底层能力越来越强,以及可接受文本越来越长,在解决垂直领域问题时,完全可以采用ICL技术,来提升通用大模型在垂直领域上的效果,那么训练一个垂直领域大模型是否是一个伪命题,我们还有必要做吗?

个人认为是需要的,从几个方面来讨论:

  • 1、个人觉得真正垂直领域大模型的做法,应该从Pre-Train做起。SFT只是激发原有大模型的能力,预训练才是真正知识灌输阶段,让模型真正学习领域数据知识,做到适配领域。但目前很多垂直领域大模型还停留在SFT阶段。

  • 2、对于很多企业来说,领域大模型在某几个能力上绝群就可以了。难道我能源行业,还需要care模型诗写的如何吗?所以领域大模型在行业领域上效果是优于通用大模型即可,不需要“即要又要还要”。

  • 3、不应某些垂直领域大模型效果不如ChatGPT,就否定垂直领域大模型。有没有想过一件可怕的事情,ChatGPT见的垂直领域数据,比你的领域大模型见的还多。但某些领域数据,ChatGPT还是见不到的。

  • 4、考虑到部署成本得问题,我觉得在7B、13B两种规模的参数下,通用模型真地干不过领域模型。及时175B的领域大模型没有打过175B的通用模型又能怎么样呢?模型参数越大,需要数据量越大,领域可能真的没有那么多数据。

PS:很多非NLP算法人员对大模型产品落地往往会有一些疑问: 

Q:我有很多的技术标准和领域文本数据,直接给你就能训练领域大模型了吧? 

A:是也不是,纯文本只能用于模型的预训练,真正可以进行后续问答,需要的是指令数据。当然可以采用一些人工智能方法生成一些指数据,但为了保证事实性,还是需要进行人工校对的。高质量SFT数据,才是模型微调的关键。 

Q:你用领域数据微调过的大模型,为什么不直接问答,还要用你的知识库? 

A:外部知识主要是为了解决模型幻觉、提高模型回复准确。 

Q:为什么两次回复结果不一样? 

A:大模型一般为了保证多样性,解码常采用Top-P、Top-K解码,这种解码会导致生成结果不可控。如果直接采用贪婪解码,模型生成结果会是局部最优。 

Q:我是不是用开源6B、7B模型自己训练一个模型就够了? 

A:兄弟,没有训练过33B模型的人,永远只觉得13B就够了。

以上是个人的一些想法,以及一些常见问题的回复,不喜勿喷,欢迎讨论,毕竟每个人对每件事的看法都不同。

开源垂直领域大模型汇总

目前有很多的垂直领域大模型已经开源,主要在医疗、金融、法律、教育等领域,本小节主要进行「中文开源」模型的汇总及介绍。

「PS:一些领域大模型,如未开源不在该汇总范围内;并且欢迎大家留言,查缺补漏。」

医疗领域

非中文项目:BioMedLM、PMC-LLaMA、ChatDoctor、BioMedGPT等,在此不做介绍。

MedicalGPT-zh

Github: https://github.com/MediaBrain-SJTU/MedicalGPT-zh

  • 简介:基于ChatGLM-6B指令微调的中文医疗通用模型。

  • 数据:通过对16组诊疗情景和28个科室医用指南借助ChatGPT构造182k条数据。数据也已开源。

  • 训练方法:基于ChatGLM-6B,采用Lora&16bit方法进行模型训练。

DoctorGLM

Github: https://github.com/xionghonglin/DoctorGLM

  • 简介:一个基于ChatGLM-6B的中文问诊模型。

  • 数据:主要采用CMD(Chinese Medical Dialogue Data)数据。

  • 训练方法:基于ChatGLM-6B模型,采用Lora和P-tuning-v2两种方法进行模型训练。

PS:数据来自Chinese-medical-dialogue-data项目。

Huatuo-Llama-Med-Chinese

Github: https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese

  • 简介:本草(原名:华驼-HuaTuo): 基于中文医学知识的LLaMA微调模型。

  • 数据:通过医学知识图谱和GPT3.5 API构建了中文医学指令数据集,数据共开源9k条。

  • 训练方法:基于Llama-7B模型,采用Lora方法进行模型训练。

Med-ChatGLM

Github: https://github.com/SCIR-HI/Med-ChatGLM

  • 简介:基于中文医学知识的ChatGLM模型微调,与本草为兄弟项目。

  • 数据:与Huatuo-Llama-Med-Chinese相同。

  • 训练方法:基于ChatGLM-6B模型,采用Lora方法进行模型训练。

ChatMed

Github: https://github.com/michael-wzhu/ChatMed

  • 简介:中文医疗大模型,善于在线回答患者/用户的日常医疗相关问题.

  • 数据:50w+在线问诊+ChatGPT回复作为训练集。

  • 训练方法:基于Llama-7B模型,采用Lora方法进行模型训练。

ShenNong-TCM-LLM

Github: https://github.com/michael-wzhu/ShenNong-TCM-LLM

  • 简介:“神农”大模型,首个中医药中文大模型,与ChatMed为兄弟项目。

  • 数据:以中医药知识图谱为基础,采用以实体为中心的自指令方法,调用ChatGPT得到11w+的围绕中医药的指令数据。

  • 训练方法:基于Llama-7B模型,采用Lora方法进行模型训练。

BianQue

Github: https://github.com/scutcyr/BianQue

  • 简介:扁鹊,中文医疗对话模型。

  • 数据:结合当前开源的中文医疗问答数据集(MedDialog-CN、IMCS-V2、CHIP-MDCFNPC、MedDG、cMedQA2、Chinese-medical-dialogue-data),分析其中的单轮/多轮特性以及医生问询特性,结合实验室长期自建的生活空间健康对话大数据,构建了千万级别规模的扁鹊健康大数据BianQueCorpus。

  • 训练方法:扁鹊-1.0以ChatYuan-large-v2作为底座模型全量参数训练得来,扁鹊-2.0以ChatGLM-6B作为底座模型全量参数训练得来。

SoulChat

Github: https://github.com/scutcyr/SoulChat

  • 简介:中文领域心理健康对话大模型,与BianQue为兄弟项目。

  • 数据:构建了超过15万规模的单轮长文本心理咨询指令数据,并利用ChatGPT与GPT4,生成总共约100万轮次的多轮回答数据。

  • 训练方法:基于ChatGLM-6B模型,采用全量参数微调方法进行模型训练。

法律领域

LaWGPT

Github: https://github.com/pengxiao-song/LaWGPT

  • 简介:基于中文法律知识的大语言模型。

  • 数据:基于中文裁判文书网公开法律文书数据、司法考试数据等数据集展开,利用Stanford_alpaca、self-instruct方式生成对话问答数据,利用知识引导的数据生成,引入ChatGPT清洗数据,辅助构造高质量数据集。

  • 训练方法:(1)Legal-Base-7B模型:法律基座模型,使用50w中文裁判文书数据二次预训练。(2)LaWGPT-7B-beta1.0模型:法律对话模型,构造30w高质量法律问答数据集基于Legal-Base-7B指令精调。(3)LaWGPT-7B-alpha模型:在Chinese-LLaMA-7B的基础上直接构造30w法律问答数据集指令精调。(4)LaWGPT-7B-beta1.1模型:法律对话模型,构造35w高质量法律问答数据集基于Chinese-alpaca-plus-7B指令精调。

ChatLaw

Github: https://github.com/PKU-YuanGroup/ChatLaw

  • 简介:中文法律大模型

  • 数据:主要由论坛、新闻、法条、司法解释、法律咨询、法考题、判决文书组成,随后经过清洗、数据增强等来构造对话数据。

  • 训练方法:(1)ChatLaw-13B:基于姜子牙Ziya-LLaMA-13B-v1模型采用Lora方式训练而来。(2)ChatLaw-33B:基于Anima-33B采用Lora方式训练而来。

LexiLaw

Github: https://github.com/CSHaitao/LexiLaw

  • 简介:中文法律大模型

  • 数据:BELLE-1.5M通用数据、LawGPT项目中52k单轮问答数据和92k带有法律依据的情景问答数据、Lawyer LLaMA项目中法考数据和法律指令微调数据、华律网20k高质量问答数据、百度知道收集的36k条法律问答数据、法律法规、法律参考书籍、法律文书。

  • 训练方法:基于ChatGLM-6B模型,采用Freeze、Lora、P-Tuning-V2三种方法进行模型训练。

LAW-GPT

Github: https://github.com/LiuHC0428/LAW-GPT

  • 简介:中文法律大模型(獬豸)

  • 数据:现有的法律问答数据集和基于法条和真实案例指导的self-Instruct构建的高质量法律文本问答数据。

  • 训练方法:基于ChatGLM-6B,采用Lora&16bit方法进行模型训练。

lawyer-llama

Github: https://github.com/AndrewZhe/lawyer-llama

  • 简介:中文法律LLaMA

  • 数据:法考数据7k、法律咨询数据14k

  • 训练方法:以Chinese-LLaMA-13B为底座,未经过法律语料continual training,使用通用instruction和法律instruction进行SFT。

金融领域

非中文较好的项目:BloombergGPT、PIXIU等,在此不做介绍。

FinGPT

Github: https://github.com/AI4Finance-Foundation/FinGPT

  • 简介:金融大模型

  • 数据:来自东方财富

  • 训练方法:基于ChatGLM-6B,采用Lora方法训练模型。

FinTuo

Github: https://github.com/qiyuan-chen/FinTuo-Chinese-Finance-LLM

  • 简介:一个中文金融大模型项目,旨在提供开箱即用且易于拓展的金融领域大模型工具链。

  • 数据:暂未完成。

  • 训练方法:暂未完成。

教育领域

EduChat

Github: https://github.com/icalk-nlp/EduChat

  • 简介:以预训练大模型为基底的教育对话大模型相关技术,提供教育场景下自动出题、作业批改、情感支持、课程辅导、高考咨询等丰富功能,服务于广大老师、学生和家长群体,助力实现因材施教、公平公正、富有温度的智能教育。

  • 数据:混合多个开源中英指令、对话数据,并去重后得到,约400w。

  • 训练方法:基于LLaMA模型训练而来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/879755.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实例038 设置窗体在屏幕中的位置

实例说明 在窗体中可以设置窗体居中显示,本例通过设置窗体的Left属性和Top属性可以准确设置窗体的位置。运行本例,效果如图1.38所示。 技术要点 设置窗体在屏幕中的位置,可以通过设置窗体的属性来实现。窗体的Left属性表示窗体距屏幕左侧的…

问题:【IntelliJ IDEA】解决idea自动声明变量加finall修饰符问题

问题:【IntelliJ IDEA】解决idea自动声明变量加finall修饰符问题 场景复现 1 new String() 2 快捷方式生成变量 final修饰的 final String s new String();步骤一:确保settings配置信息 settings-----》Editor------》Code Style--------》java下的这两个选项不…

通过TightVNC远程访问MacOS

目录 一、下载 TightVNC 下载链接:https://www.tightvnc.com/ 下载后按步骤进行安装,安装完成后安装目录如下: 运行 tvnviewer.exe,输入远程 IP,点击【connect】: 输入密码,点击【OK】后即可远…

Android布局【TableLayout】

文章目录 说明常见属性子控件设置属性 项目结构主要代码 说明 TableLayout也称为表格布局 常见属性 android:collapseColumns:设置需要被隐藏的列的序列号,从0开始android:stretchColumns:设置允许被拉伸的列的列序号,从0开始&…

数据结构算法--2 冒泡排序,选择排序,插入排序

基础排序算法 冒泡排序 思想就是将相邻元素两两比较,当一个元素大于右侧相邻元素时,交换他们的位置,小于右侧元素时,位置不变,最终序列中的最大元素,像气泡一样,到了最右侧。 这时冒泡排序第一…

vulnhub靶场之ADROIT: 1.0.1

准备: 攻击机:虚拟机kali、本机win10。 靶机:Adroit: 1.0.1,下载地址:https://download.vulnhub.com/adroit/Adroit-v1.0.1.ova,下载后直接vbox打开即可。 知识点:shell反弹(jar&…

接口自动化必备技能——jmeter提取token方式以及设置成全局变量(跨线程组传token值)方式

前言 今天Darren洋教大家如何使用jmeter中的插件来进行token值的提取与调用,今天Darren洋介绍两种jmeter提取token值的方式,一种是在当前线程组中直接提取token值,一种是跨线程组的方式进行token值的提取并调用给不同线程组里的HTTP接口使用。…

LeetCode算法递归类—平衡二叉树

目录 110. 平衡二叉树 题解: 运行结果: 优化版1: 运行结果: 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点 的左右两个子树的高度…

基于Bsdiff差分算法的汽车OTA升级技术研究(学习)

摘要 针对汽车OTA整包升级时,用户下载时间长,升级时间长,设备服务器端压力大等问题,本文提出了一种基于Bsdiff差分算法的汽车OTA升级技术。该算法能够对比新旧版本的差异,进行差分文件下载,减少软件包的下…

bat批处理启动jar包

echo off title “gwjy_sc(86)” java -jar -Xms512m -Xmx1024m -XX:MaxNewSize512m -XX:MaxPermSize512m gwjy_sc.jar --spring.config.localapplication.yml exit

Spring Bean的作用域和生命周期

文章目录 1. Bean的作用域2. Spring的生命周期3. Bean的生命周期4. 相关注解总结 1. Bean的作用域 Bean 的作用域指的是 Bean 在 Spring 容器中的行为(Bean 实例创建及生命周期),它的行为是由 Spring 来管理的,可以根据具体情况选…

urllib爬虫模块

urllib爬取数据 import urllib.request as request# 定义url url "https://www.baidu.com" #模拟浏览器发起请求获取响应对象 response request.urlopen(url)""" read方法返回的是字节形式的二进制数据 二进制--》字符串 解码 decode( 编码的格式…

基于粒子群改进深度信念网络的回归分析,基于PSO-DBN的回归分析

目录 背影 DBN神经网络的原理 DBN神经网络的定义 受限玻尔兹曼机(RBM) 粒子群算法的原理 DBN的粒子群改进深度信念网络的回归分析 基本结构 主要参数 数据 MATALB代码 结果图 展望 背影 DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,是一种非常好的分类算…

猿辅导《暑假一本通》:28天科学规划,帮助孩子保持学习状态

一直以来,有效利用寒、暑假期查漏补缺、解决偏科问题、初步养成好的自主学习习惯等是很多家长对学生的期望。但当前市面上教辅品类繁多,内容质量却参差不齐。据北京开卷统计数据显示,2022年前三季度零售市场上的教辅图书超过8000种&#xff0…

[NDK]从Opengles到Vulkan-基础篇(9)-视口相关

关于绘制调用的流程 我们可以看到整个流程步骤 1 光栅化2 裁剪测试3 多重采样4 深度测试5 模板测试6 混合7 抖动8 输出帧数据 这一节会涉及到裁剪测试 ##关于视口 我们需要先了解以下四个概念 1.屏幕:即计算机的整个屏幕大小。 2.窗口:即屏幕中的某一个窗口,可放大缩小和移…

通讯商二要素Api接口验证真伪

随着互联网的普及和各种社交平台、电商平台、金融平台的发展,许多业务都需要用户进行实名认证,这也就涉及到了手机号码和姓名的验证问题。为了解决这个问题,现在有很多运营商提供的二要素API接口能够进行手机号码和姓名的验证,本文…

使用Pandas进行数据清理的入门示例

数据清理是数据分析过程中的关键步骤,它涉及识别缺失值、重复行、异常值和不正确的数据类型。获得干净可靠的数据对于准确的分析和建模非常重要。 本文将介绍以下6个经常使用的数据清理操作: 检查缺失值、检查重复行、处理离群值、检查所有列的数据类型…

Qt打包程序 windeployqt

Qt Creator运行直接生成的可执行性程序不能直接使用,原因是缺少依赖库。直接运行会报错: 为可执行文件添加图标 为可执行文件添加 icon 图标的方法很简单,将事先准备好的 icon 图标拷贝到程序对应的文件夹中,然后在 pro 工程文…

Java课题笔记~ JSTL

使用EL表达式已经实现了页面输出显示的优化,为什么还需要使用JSTL呢? 这是因为使用EL表达式无法实现逻辑处理,如循环、条件判断等,因此还需要与Java代码混合使用,而JSTL则可以实现逻辑控制,从而进一步优化…

中小企业选择Zoho CRM的五大优点

一款适用于中小企业的CRM客户关系管理软件,它可以帮助企业提高销售效率,改善营销效果,优化业务流程,实现业绩增长。下面说说,中小企业为什么要选择Zoho CRM? 1、多种版本定价 CRM需要提供了多种定价方案&…