C++:模拟实现list及迭代器类模板优化方法

news2024/11/24 7:01:01

文章目录

  • 迭代器
  • 模拟实现

本篇模拟实现简单的list和一些其他注意的点

在这里插入图片描述

迭代器

如下所示是利用拷贝构造将一个链表中的数据挪动到另外一个链表中,构造两个相同的链表

list(const list<T>& lt)
{
	emptyinit();
	for (auto e : lt)
	{
		push_back(e);
	}
}

void test_list1()
{
	list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	lt.push_back(5);

	list<int> l2(lt);
}

lt作为形参,传引用可以提高传参的效率,同时应该加上const修饰来保证不会因为不小心修改了形参导致外部的实参也被修改,这样的结果是不应该的,因此就要加const把这个形参变成一个const对象

而问题又来了,const对象要使用的是const迭代器,而前面没有写const迭代器,因此这里就引入了const迭代器的实现

从vector的模拟实现中,看似似乎只需要在原来的迭代器的基础上加上一个const即可,但事实上:

const迭代器和普通迭代器是两种不同的迭代器,不能直接在普通的迭代器后面加const,原因?

要解决这个问题,先重新回顾一下vector中const迭代器的定义流程:

对比vector的迭代器,vector中的迭代器const版本和非const版本直接在非const版本后面加const使它变成const迭代器即可,这样在调用的时候就可以直接进行调用

在这里插入图片描述

iterator的定义,const版本就是在指针前面加上const,这样返回的就是const修饰的指针,因此就可以做到通过该迭代器只读,不可修改的作用

在这里插入图片描述

这里的迭代器本质上就是指针在底层进行访问,然后我们定义一个const指针,使得const指针就不能对指针指向的内容进行修改了

下面仿照vector修改的原理修改list

要修改的部分其实就是下面的代码:

iterator begin()
{
	return iterator(_head->_next);
}

iterator end()
{
	return iterator(_head);
}

在函数后加const很简单,但是核心是要把返回值也定义为const指针版本,这个过程要如何实现?

由于这里是把iterator封装成了一个类进行的实现,因此需要重新封装一个类进行实现

	template <class T>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef  __list_iterator<T> self;
		// 成员
		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		self operator--(int)
		{
			self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		T& operator*()
		{
			return _node->_data;
		}

		T* operator->()
		{
			return &_node->_data;
		}

		bool operator==(const self& pos)
		{
			return _node == pos._node;
		}

		bool operator!=(const self& pos)
		{
			return !(*this == pos);
		}
	};

	template <class T>
	struct __list_const_iterator
	{
		typedef list_node<T> Node;
		typedef  __list_const_iterator<T> self;
		// 成员
		Node* _node;

		__list_const_iterator(Node* node)
			:_node(node)
		{}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		self operator--(int)
		{
			self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		const T& operator*()
		{
			return _node->_data;
		}

		const T* operator->()
		{
			return &_node->_data;
		}

		bool operator==(const self& pos)
		{
			return _node == pos._node;
		}

		bool operator!=(const self& pos)
		{
			return !(*this == pos);
		}
	};

但事实上,这两份代码只有很少的地方有区别,更多的内容都是相同的,这样是不满足较好的代码风格,因此在stl源码中,使用了模板对这两个类进行了封装

改进版本如下:

	template <class T, class Ref, class Ptr >
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef  __list_iterator<T, Ref, Ptr> self;
		// 成员
		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		self operator--(int)
		{
			self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		bool operator==(const self& pos)
		{
			return _node == pos._node;
		}

		bool operator!=(const self& pos)
		{
			return !(*this == pos);
		}
	};

	template <class T>
	class list
	{
		void emptyinit()
		{
			_head = new Node();
			_head->_next = _head;
			_head->_prev = _head;
			_size = 0;
		}
	public:
		typedef list_node<T> Node;
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;

		// 构造函数 
		list()
		{
			emptyinit();
		}
		// 拷贝构造
		list(const list<T>& lt)
		{
			emptyinit();
			auto it = lt.begin();
			//*it = 30;
		}

		void push_back(const T& x)
		{
			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		// head     tail->prev  tail
		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		iterator begin()
		{
			return iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}

		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* newnode = new Node(x);

			//        newnode
			//   prev         cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;

			return iterator(newnode);
		}

		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			// prev cur next
			prev->_next = cur->_next;
			next->_prev = cur->_prev;

			return iterator(next);
		}

	private:
		Node* _head;
		size_t _size;
	};

这里引入了类模板的概念,简单来说,当需要调用const类型时就会模板实例化出一个const版本的迭代器,再进行相关的操作,这样的操作可以避免代码冗余,也是模板的强大之处

模拟实现

#pragma once

// 实现的是双向循环链表,链表中应该包含节点类和迭代器类,节点类用于从内存中申请节点,迭代器类用于获取节点指针
namespace mylist
{
	// 把节点进行封装,可以动态获取一个节点
	template <class T>
	struct list_node
	{
		// 成员
		list_node<T>* _next;
		list_node<T>* _prev;
		T _data;

		// 成员函数
		list_node(const T& val = T())
			:_data(val)
			, _next(nullptr)
			, _prev(nullptr)
		{}
	};

	// 对迭代器进行封装,使得外界看到的是迭代器
	// 迭代器当中存储的是某个节点的指针
	// 可以对迭代器进行各项操作
	template <class T, class Ref, class Ptr >
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef  __list_iterator<T, Ref, Ptr> self;
		// 成员
		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		self operator--(int)
		{
			self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		bool operator==(const self& pos)
		{
			return _node == pos._node;
		}

		bool operator!=(const self& pos)
		{
			return !(*this == pos);
		}
	};

	// 适配器 -- 复用
	template <class T, class Ref, class Ptr >
	struct __reverse_iterator
	{
		typedef list_node<T> Node;
		typedef  __reverse_iterator<T, Ref, Ptr> self;
		// 成员
		Node* _node;

		__reverse_iterator(Node* node)
			:_node(node)
		{}

		self& operator++()
		{
			_node = _node->_prev;
			return *this;
		}

		self& operator--()
		{
			_node = _node->_next;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		self operator--(int)
		{
			self tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		bool operator==(const self& pos)
		{
			return _node == pos._node;
		}

		bool operator!=(const self& pos)
		{
			return !(*this == pos);
		}
	};


	template <class T>
	class list
	{
		void emptyinit()
		{
			_head = new Node();
			_head->_next = _head;
			_head->_prev = _head;
			_size = 0;
		}
	public:
		typedef list_node<T> Node;
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;
		typedef __reverse_iterator<T, T&, T*> reverse_iterator;
		typedef __reverse_iterator<T, const T&, const T*> const_reverse_iterator;

		// 构造函数 
		list()
		{
			emptyinit();
		}
		// 拷贝构造
		list(const list<T>& lt)
		{
			emptyinit();
			auto it = lt.begin();
			//*it = 30;
		}

		void push_back(const T& x)
		{
			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		// head     tail->prev  tail
		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		iterator begin()
		{
			return iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}

		reverse_iterator rbegin()
		{
			return reverse_iterator(_head->_prev);
		}

		reverse_iterator rend()
		{
			return reverse_iterator(_head);
		}

		const_reverse_iterator rbegin() const
		{
			return const_reverse_iterator(_head->_prev);
		}

		const_reverse_iterator rend() const
		{
			return const_reverse_iterator(_head);
		}

		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* newnode = new Node(x);

			//        newnode
			//   prev         cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;

			return iterator(newnode);
		}

		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			// prev cur next
			prev->_next = cur->_next;
			next->_prev = cur->_prev;

			return iterator(next);
		}

	private:
		Node* _head;
		size_t _size;
	};


	void test_list1()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);
		
		cout << "正序" << endl;
		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		cout << "逆序" << endl;
		auto rit = lt.rbegin();
		while (rit != lt.rend())
		{
			cout << *rit << " ";
			rit++;
		}
		cout << endl;
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/879613.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【ES】【elasticsearch】分布式搜索

文章目录 ☀️安装elasticsearch☀️1.部署单点es&#x1f338;1.1.创建网络&#x1f338;1.2.下载镜像&#x1f338;1.3.运行 ☀️2.部署kibana&#x1f338;2.1.部署&#x1f338;2.2.DevTools ☀️3.安装IK分词器&#x1f338;3.1.在线安装ik插件&#xff08;较慢&#xff0…

ARM汇编快速入门

本文主要分享如何快速上手ARM汇编开发的经验、汇编开发中常见的Bug以及Debug方法、用的Convolution Dephtwise算子的汇编实现相对于C版本的加速效果三方面内容。 前言 神经网络模型能够在移动端实现快速推理离不开高性能算子&#xff0c;直接使用ARM汇编指令来进行算子开发无疑…

ad+硬件每日学习十个知识点(32)23.8.12 (元器件封装、PCB封装、3D的PCB封装)

文章目录 1.元器件封装属性值说明2.PCB封装标准说明&#xff08;M、N、L&#xff09;3.电阻的PCB封装&#xff08;阻焊层&#xff09;4.电感的PCB封装&#xff08;CD、CDRH&#xff09;1.CD31的意思是&#xff0c;直径3mm&#xff0c;高度1mm![在这里插入图片描述](https://img…

【SQL应知应会】索引(二)• MySQL版

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习&#xff0c;有基础也有进阶&#xff0c;有MySQL也有Oracle 索引 • MySQL版 前言一、索引1.简介2.创建2.1 索引…

Gradio——快速部署可视化人智能应用

前言 Gradio是一个开源的Python库&#xff0c;用于快速构建机器学习和数据科学演示的应用。它可以帮助你快速创建一个简单漂亮的用户界面&#xff0c;以便向客户、合作者、用户或学生展示你的机器学习模型。此外&#xff0c;还可以通过自动共享链接快速部署模型&#xff0c;并获…

IntelliJ IDEA热部署:JRebel插件的安装与使用

热部署 概述JRebel 概述 热部署&#xff0c;指修改代码后&#xff0c;无需停止应用程序&#xff0c;即可使修改后的代码生效&#xff0c;其有利于提高开发效率。 热部署方式&#xff1a; 手动热部署&#xff1a;修改代码后&#xff0c;重新编译项目&#xff0c;然后启动应用程…

【软件测试】Linux系统下安装jdk配置环境变量(详细步骤)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、安装环境 操作…

UGUI事件系统EventSystem

一. 事件系统概述 Unity的事件系统具有通过鼠标、键盘、游戏控制柄、触摸操作等输入方式&#xff0c;将事件发送给对象的功能。事件系统通过场景中EventSystem对象的组件EventSystem和Standalone Input Module发挥功能。EventSystem对象通常实在创建画布的同时被创建的&#xf…

c++杂谈-5

目录 一、一些c11新特性1. decltype关键字及函数后置返回类型2. 函数后置返回类型 二、c的内存模型三、函数指针和回调函数四、函数模版的注意事项 一、一些c11新特性 1. decltype关键字及函数后置返回类型 在C11中&#xff0c;decltype操作符&#xff0c;用于查询表达式的数…

HarmonyOS NEXT新能力,一站式高效开发HarmonyOS应用

2023年8月6日华为开发者大会2023&#xff08;HDC.Together&#xff09;圆满收官&#xff0c;伴随着HarmonyOS 4的发布&#xff0c;华为向开发者发布了汇聚所有最新开发能力的HarmonyOS NEXT开发者预览版&#xff0c;并分享了围绕“一次开发&#xff0c;多端部署” “可分可合&a…

通过Microsoft Loopback Adapter实现虚拟机和物理机的通信

问题 问&#xff1a;不借助路由器或交换机的情况下&#xff0c;能不能实现主机和虚拟及之间两个软件的通信呢&#xff1f;要求主机和虚拟及均有独立的ip地址&#xff0c;从而进行指定源的组播通信。 答&#xff1a;可以。通过借助虚拟网络适配器&#xff0c;不需要路由器或交…

深度思考rpc框架面经系列之三

6 一个rpc框架的请求调用的流程&#xff08;小红书面试&#xff09; 6.1 讲讲rpc调用原理&#xff0c;比如服务怎么发现&#xff0c;怎么调用&#xff0c;提供者怎么响应。怎么去请求&#xff0c;又怎么回来的 一个RPC&#xff08;远程过程调用&#xff09;框架的核心目的是允…

百度飞浆实战-手写数字识别

目录 参考建模过程1、数据加载和预处理2、模型的网络设计和开发模型组网 3、模型训练 代码实战1、打开aistudio找到项目 参考 视频教程 PaddleAPI DOC 建模过程 1、数据加载和预处理 飞桨框架帮助我们将MNIST数据集进行了内置 数据集名称&#xff1a; MNIST 数据集官网 &am…

2023-08-14 LeetCode每日一题(合并二叉树)

2023-08-14每日一题 一、题目编号 617. 合并二叉树二、题目链接 点击跳转到题目位置 三、题目描述 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两棵树上的一些节点将会重叠&#xff08;而另一些不会…

Android布局【RelativeLayout】

文章目录 介绍常见属性根据父容器定位根据兄弟组件定位 通用属性margin 设置组件与父容器的边距padding 设置组件内部元素的边距 项目结构主要代码 介绍 RelativeLayout是一个相对布局&#xff0c;如果不指定对齐位置&#xff0c;都是默认相对于父容器的左上角的开始布局 常见…

3D沉浸式旅游网站开发案例复盘【Three.js】

Plongez dans Lyon网站终于上线了。 我们与 Danka 团队和 Nico Icecream 共同努力&#xff0c;打造了一个令我们特别自豪的流畅的沉浸式网站。 这个网站是专为 ONLYON Tourism 和会议而建&#xff0c;旨在展示里昂最具标志性的活动场所。观看简短的介绍视频后&#xff0c;用户…

[足式机器人]Part5 机械设计 Ch00/01 绪论+机器结构组成与连接 ——【课程笔记】

本文仅供学习使用 本文参考&#xff1a; 《机械设计》 王德伦 马雅丽课件与日常作业可登录网址 http://edu.bell-lab.com/manage/#/login&#xff0c;选择观摩登录&#xff0c;查看2023机械设计2。 机械设计-Ch00Ch01——绪论机器结构组成与连接 Ch00-绪论0.1 何为机械设计——…

设计HTML5列表和超链接

在网页中&#xff0c;大部分信息都是列表结构&#xff0c;如菜单栏、图文列表、分类导航、新闻列表、栏目列表等。HTML5定义了一套列表标签&#xff0c;通过列表结构实现对网页信息的合理排版。另外&#xff0c;网页中还包含大量超链接&#xff0c;通过它实现网页、位置的跳转&…

ChatGPT爆火,会给教育带来什么样的影响或者冲击?

近来&#xff0c;人工智能聊天机器人ChatGPT连上热搜&#xff0c;火爆全网。ChatGPT拥有强大的信息整合能力、自然语言处理能力&#xff0c;可谓是“上知天文&#xff0c;下知地理”&#xff0c;而且还能根据要求进行聊天、撰写文章等。 ChatGPT一经推出&#xff0c;便迅速在社…

C语言——动态内存函数(malloc、calloc、realloc、free)

了解动态内存函数 前言&#xff1a;一、malloc函数二、calloc函数三、realloc函数四、free函数 前言&#xff1a; 在C语言中&#xff0c;动态内存函数是块重要的知识点。以往&#xff0c;我们开辟空间都是固定得&#xff0c;数组编译结束后就不能继续给它开辟空间了&#xff0…