【报童模型】随机优化问题二次规划

news2024/11/24 7:04:27

面对需求的不确定性,报童模型是做库存优化的常见模型。而标准报童模型假设价格是固定的,此时求解一个线性规划问题,可以得到最优订货量,这种模型存在局限性。因为现实世界中价格与需求存在一定的关系,本文假设需求q是价格p的线性函数,基于历史需求数据学习回归直线的参数并计算拟合残差,带入到报童模型中,此时的报童模型变成一个二次规划问题,其目标函数是关于价格p是二次的。

方法

为提高报童模型的准确性,使用SAA算法解决随机优化问题,并与其他方法做对比。

对标准报童模型做的三个扩展

扩展1:允许rush order

当售卖当天需求量过高时,允许报童紧急订报,只是价格g比一般订购价格c稍高,即g>c
如果定货太多,那么每份报纸会产生持货成本t,特别地,如果允许以一定价格回退给厂商,那么t<0 。但在这个文章中,仅考虑t>0的情况。
符号说明:
单份报纸的售价为p;
订货量是q;
目标函数是
在这里插入图片描述

扩展2:需求与价格呈线性相关

假设需求与价格的线性回归模型如下
D = β 0 + β 1 p + ϵ i D=\beta_0+\beta_1p+\epsilon_i D=β0+β1p+ϵi
根据给定的数据集(含价格和需求量,即 { ( p i , D i ) ∣ i = 1 , 2 , . . . , n } \{(p_i,D_i)|i=1,2,...,n\} {(pi,Di)i=1,2,...,n}),找出最佳拟合线性回归函数的参数。假设干扰项 ϵ i \epsilon_i ϵi具有随机性,根据历史数据 { ( p i , D i ) ∣ i = 1 , 2 , . . . , n } \{(p_i,D_i)|i=1,2,...,n\} {(pi,Di)i=1,2,...,n}学习到参数 β 0 , β 1 \beta_0,\beta_1 β0,β1,计算残差值 { ϵ i ∣ i = 1 , 2 , . . . , n } \{\epsilon_i|i=1,2,...,n\} {ϵii=1,2,...,n}

  • 对于价格固定的标准报童模型,求最优订货量
    如果新价格p出现,将计算好的残差值 { ϵ i ∣ i = 1 , 2 , . . . , n } \{\epsilon_i|i=1,2,...,n\} {ϵii=1,2,...,n}和新价格p带入模型 D = β 0 + β 1 p + ϵ i D=\beta_0+\beta_1p+\epsilon_i D=β0+β1p+ϵi,可以得到新价格p所对应的需求量估计值 { D i ^ ∣ i = 1 , 2 , . . . , n } \{\hat{D_i}|i=1,2,...,n\} {Di^i=1,2,...,n},这些估计值会带入到标准报童模型中,求解该线性规划问题,从而得到最优订货量。
    关于计算需求量估计值的进一步解释,比如:估计参数 β 0 = 1000 , β 1 = − 2 \beta_0=1000,\beta_1=-2 β0=1000,β1=2,现有两个样本的拟合残差是15和-9,对于新价格2来说,需求量估计值有
    1000 − 2 ∗ 2 + 15 = 1011 1000-2*2+15=1011 100022+15=1011,
    1000 − 2 ∗ 2 − 9 = 987 1000-2*2-9=987 1000229=987
  • 对于价格不固定的扩展报童模型,求最优订货量和最优价格
    此时,目标函数
    在这里插入图片描述
    p ∗ D i p*D_i pDi就会变成 p ∗ ( β 0 + β 1 p + ϵ i ) p*(\beta_0+\beta_1p+\epsilon_i) p(β0+β1p+ϵi),这是价格p的二次函数。
    注意:上面目标函数中的 D i D_i Di指的是新价格p所对应的第i个需求估计值,而不是原数据集中第i个样本的需求值。
    我觉得没有疑问了,这本身就是一个关于价格p的二次优化问题。

注:
为了求解这个问题,引入哑变量 h i h_i hi,表示第i天成本的负值。如此一来,目标函数——利润函数可以表示为收益+成本负值的平均,其中收益指 p ∗ D i p*D_i pDi,成本负值指 h i h_i hi
在这里插入图片描述

在这里插入图片描述

扩展3:分析数据集对最优订货量和最优价格的影响(最优订购量、最优价格的敏感性分析)

对原数据集做重采样,计算最优订货量、最优价格、对应的期望利润值。

任务

  1. 根据给定数据集,估计出需求与价格之间的线性回归方程;
  2. 给定参数c=0.5,g=0.75,t=0.15,利用残差数据 { ϵ i ∣ i = 1 , 2 , . . . , n } \{\epsilon_i|i=1,2,...,n\} {ϵii=1,2,...,n},求价格p=1时的需求量估计值 { D i ^ ∣ i = 1 , 2 , . . . , n } \{\hat{D_i}|i=1,2,...,n\} {Di^i=1,2,...,n}
  3. 求价格p=1时的最优订货量(这是一个线性规划问题);
  4. 假设价格不是固定的,将需求量与价格的线性回归方程带入到报童模型中,解QP(二次规划问题,目标函数含价格的平方项),得最优订货量、最优价格;
  5. 分析最优价格、最优订货量是否对数据集敏感。对原数据集做重采样,重新估计需求与价格之间的线性回归函数参数 ,求最优价格和最优订货量;
  6. 重复上述重采样、拟合操作,得到多组最优订货量和最优价格;为得到的最优订货量、最优价格、期望利润绘制直方图,观察统计规律。

建模

价格固定时

下面是思路,我用黄色荧光笔标了步骤,即
如果新价格p出现,将计算好的残差值 { ϵ i ∣ i = 1 , 2 , . . . , n } \{\epsilon_i|i=1,2,...,n\} {ϵii=1,2,...,n}和新价格p带入模型 D = β 0 + β 1 p + ϵ i D=\beta_0+\beta_1p+\epsilon_i D=β0+β1p+ϵi,可以得到新价格p所对应的需求量估计值 { D i ^ ∣ i = 1 , 2 , . . . , n } \{\hat{D_i}|i=1,2,...,n\} {Di^i=1,2,...,n},这些估计值会带入到标准报童模型中,求解该线性规划问题,从而得到最优订货量。
在这里插入图片描述
在这里插入图片描述
上述模型的含义:目标函数是最大化利润,引入哑变量 h i h_i hi表示第’i天的成本负值。
上面画黄线的约束表示:不管需求量大于还是小于订货量,利润都大于 h i h_i hi。换言之,限制利润(不管需求量大于还是小于订货量)大于等于一个变量,这个变量大于等于负无穷。
??为什么成本负值数组h的约束不是 0 > h > − inf ⁡ 0>h>-\inf 0>h>inf 做实验的时候,加上试试。会影响结果
将上述约束化简成Gurobi建模所需要的形式(如下图的蓝笔)
注:“Gurobi建模所需要的形式”是指“明确哪些是决策变量,哪些是决策变量的系数,哪些是右端项”,这里的决策变量有 q , h 1 , . . . h N q,h_1,...h_N q,h1,...hN
化简步骤见图中黑笔
在这里插入图片描述

价格不固定时

我用蓝笔标注了步骤:
首先,获取需求-价格数据集,估计线性回归参数并计算残差数据;
接着,把 D = β 0 + β 1 p + ϵ i D=\beta_0+\beta_1p+\epsilon_i D=β0+β1p+ϵi带入到标准报童模型中,会得到一个二次规划问题。
在这里插入图片描述

将之前的拟合结果——残差数据、拟合函数参数等,带入到上述模型中,得到需求量估计值 D i D_i Di,得到如下模型:

记录一个我没看懂的地方。我觉得作者的转换并没有把二次约束转成线性约束啊,难道是我对“二次规划”的定义理解出错了?我以为的二次规划是,目标函数是二次的,约束是一次的 数学优化问题。
在这里插入图片描述
关于上图的问题,我在纸上列了一下,作者的Gurobi模型应该是把上面两个约束的二次项 p 2 p^2 p2拿掉了(用报告里面的话说:拿到目标函数中了)。
??为什么可以直接拿掉呢
关于上面的约束如何化简成jupyter文件中Gurobi模型,我在草稿纸上简单列了一下,蓝色荧光笔标注的是Gurobi建模时所用的约束。
约束1:
在这里插入图片描述
约束2:
在这里插入图片描述

上图还有一个问题是,目标函数中决策变量 h i h_i hi的系数应该是1。这一点可以从两个地方看出来:第一,老师给的作业说明(见上面“扩展2”中, h i h_i hi的含义说明——成本负值);第二,作者的Gurobi建模obj数组中目标函数系数的指定。

最优解的稳定性分析

目标:探究使用不同的数据集是否会影响到最优解——最优价格和最优订货量
做法:对原数据集做1000次重采样,每次采样随机抽取99组样本形成新数据集。然后,针对新数据集,计算并收集最优订货量和最优价格,以及对应的最优利润expect_profit。绘制最优订货量、最优价格、最优价格的分布直方图,发现大致服从正态分布,且最优价格与之前LP中的预定价格1相差不大,expect_profit的均值也与之前LP的expect_profit相差不大。

注:新数据集与原数据集样本顺序是不同的。(我觉得这里有些不妥……应该设计新数据集是原数据集的子集,然后观察最优解的统计规律)

我给这个报告添加了一个conclusion,如下图
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/873697.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FreeRTOS源码分析-12 低功耗管理

目录 1 STM32低功耗管理概念及应用 1.1睡眠模式 1.2 停止模式 1.3 待机模式 2 Tickless低功耗管理 2.1 Tickless低功耗模式介绍 2.2 FreeRTOS低功耗模式配置 2.3 FreeRTOS低功耗模式应用 3 低功耗管理实际项目开发 3.1 低功耗设计必须要掌握的硬件知识 …

leetcode 1049. 最后一块石头的重量 II

2023.8.13 与分割等和子集类似&#xff0c;可以转化为0-1背包问题。 本题也是需要将数组元素分成两堆&#xff0c;区别在于本题需要使这两堆的差值最小&#xff0c;而之前那题是需要两堆差值为0。 使用之前的一维dp数组的思路&#xff0c;代码如下&#xff1a; class Solution…

开发一个RISC-V上的操作系统(八)—— 抢占式多任务(Preemptive Multitasking)

目录 一、抢占式多任务 二、代码实现 三、上板测试 本节的代码在仓库的 06_Preemptive_Muti_Task 目录下&#xff0c;仓库链接&#xff1a;riscv_os: 一个RISC-V上的简易操作系统 本文代码的运行调试会在前面开发的RISC-V处理器上进行&#xff0c;仓库链接&#xff1a;cpu_…

heap pwn 入门大全 - 1:glibc heap机制与源码阅读(上)

本文为笔者学习heap pwn时&#xff0c;学习阅读glibc ptmalloc2源码时的笔记&#xff0c;与各位分享。可能存在思维跳跃或错误之处&#xff0c;敬请见谅&#xff0c;欢迎在评论中指出。本文也借用了部分外网和其他前辈的素材图片&#xff0c;向各位表示诚挚的感谢&#xff01;如…

MySQL修改编码

插入中文乱码,我电脑上没有出现&#xff0c;我只是来记录一下 MySQL版本: 8.0.34Windows 查看编码 mysql中输入下面的命令 show variables like ‘character_%’; 乱码的一般是图片中划红线的部分不是utf8 character_set_database是设置数据库的默认编码的 character_set_ser…

面试热题(回文链表)

给定一个链表的 头节点 head &#xff0c;请判断其是否为回文链表。 如果一个链表是回文&#xff0c;那么链表节点序列从前往后看和从后往前看是相同的。 回文链表类似于回文串&#xff0c;正读倒读的顺序是一样的&#xff0c;那么我们怎么去判断一个链表是否是回文链表呢&…

7.2.tensorRT高级(2)-学习深度学习中涉及的线程知识

目录 前言1. 多线程2. 问答环节2.1 线程启动相关问题2.2 线程启动函数参数相关问题 总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次…

7. 延迟队列

延迟队列 7.1. 延迟队列概念 延时队列,队列内部是有序的&#xff0c;最重要的特性就体现在它的延时属性上&#xff0c;延时队列中的元素是希望 在指定时间到了以后或之前取出和处理&#xff0c;简单来说&#xff0c;延时队列就是用来存放需要在指定时间被处理的 元素的队列。 7…

第二章-算法

第二章-算法 数据结构和算法的关系 算法是解决特定问题求解步骤的描述&#xff0c;在计算机中表现为指令的有限序列&#xff0c;并且每条指令表示一个或多个操作。 算法的特性 算法有五个基本特征&#xff1a;输入、输出、有穷性、确定性和可行性。 输入&#xff1a;算法具…

LVS集群和nginx负载均衡

目录 1、基于 CentOS 7 构建 LVS-DR 群集。 2、配置nginx负载均衡。 1、基于 CentOS 7 构建 LVS-DR 群集。 1.部署LVS负载调度器 1>安装配置工具 [rootnode6 ~]# yum install -y ipvsadm 2>配置LVS虚拟IP&#xff08;VIP地址&#xff09; [rootnode6 ~]# ifconfig ens…

Tesseract用OpenCV进行文本检测

我没有混日子&#xff0c;只是辛苦的时候没人看到罢了 一、什么是Tesseract Tesseract是一个开源的OCR&#xff08;Optical Character Recognition&#xff09;引擎&#xff0c;OCR是一种技术&#xff0c;它可以识别和解析图像中的文本内容&#xff0c;使计算机能够理解并处理…

Dalsa线阵相机说明(Linea Color GigESeries 2k and 4K)

文章目录 一. Dalsa相机软件整体架构二. 相机编号说明以及软件要求三. 相机硬件参数三. 相机基本参数四. 软件参数设置列表1. Sensor Control Category2. I/O Control Category3. Counter and Timer Control Category4. Advanced Processing Control Category(1) 平场校正介绍(…

蚂蚁聚合支付系统源码完美版+附安装教程

这是我上个月花重金购买的四fang系统源码&#xff0c;现在分享给大家。 源码内附安装教程&#xff0c;20多项功能及安全方面的更新文档&#xff0c;源码说明等&#xff0c;小白也能轻松搭建。 能够轻松应对高并发&#xff0c;等以前版本无法应对的并发问题&#xff0c;也不会被…

JIRA:项目管理的秘密武器

引言 在当今动态且快速变化的商业环境中&#xff0c;项目管理已经成为任何组织成功的关键因素。能够有效地管理项目&#xff0c;保证项目在设定的时间和预算内按照预期的质量完成&#xff0c;是每个项目经理的目标。为了实现这个目标&#xff0c;项目经理需要依赖强大的工具&a…

由于找不到vcruntime140_1.dll,无法继续执行代码该怎么修复呢?

我最近遇到了一个vcruntime140_1.dll的问题&#xff0c;导致我的某些应用程序无法正常运行。当我第一次遇到这个问题时&#xff0c;我对这个dll文件的作用一无所知。我开始搜索并了解了vcruntime140_1.dll是Microsoft Visual C Redistributable的一部分&#xff0c;并为使用Vis…

FreeRTOS(计数信号量)

资料来源于硬件家园&#xff1a;资料汇总 - FreeRTOS实时操作系统课程(多任务管理) 目录 一、计数信号量的定义与应用 1、计数信号量的定义 2、计数信号量的应用 二、计数信号量的运作机制 1、任务间计数信号量的实现 三、计数信号量常用的API函数 1、计数信号量典型流程…

泛型编程| 模板初阶——懒人福音!

目录 前言介绍 函数模板 函数模板格式 函数模板的原理 函数模板的实例化 隐式实例化 显示实例化 模板参数匹配规则 类模板 总结 前言介绍 之前c语言实现swap函数的时候&#xff0c;我们不仅要修改参数的类型&#xff0c;还要修改函数的名字 而在学完函数重载之后&am…

东南大学齿轮箱故障诊断(Python代码,MSCNN结合LSTM结合注意力机制模型,代码有注释)

运行代码要求&#xff1a; 代码运行环境要求&#xff1a;Keras版本>2.4.0&#xff0c;python版本>3.6.0 1.东南大学采集数据平台&#xff1a; 数据 该数据集包含2个子数据集&#xff0c;包括轴承数据和齿轮数据&#xff0c;这两个子数据集都是在传动系动力学模拟器&am…

Android JNI实现锅炉压力显示系统详解

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂&#xff0c;风趣幽默"&#xff0c;感觉非常有意思,忍不住分享一下给大家。 &#x1f449;点击跳转到教程 第一步创建GuoLu.c文件 // // Created by DELL on 2023/8/13. // #include <stdio.h…

Python 潮流周刊#15:如何分析 FastAPI 异步请求的性能?

你好&#xff0c;我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容&#xff0c;大部分为英文。标题取自其中一则分享&#xff0c;不代表全部内容都是该主题&#xff0c;特此声明。 本周刊精心筛选国内外的 250 信息源&#xff0c;为你挑选最值得分享的文章、教程、开源…