自动驾驶数据集汇总

news2024/11/24 13:55:58

1.Nuscenes

数据集链接:nuScenes

nuscenes数据集下有多个任务,涉及Detection(2D/3D)Trackingprediction激光雷达分割全景任务规划控制等多个任务;

nuScenes数据集是一个具有三维目标注释的大型自动驾驶数据集,也是目前主流算法评测的benchmark,它的特点:

● 全套传感器套件(1个激光雷达、5个雷达、6个摄像头、IMU、GPS)

● 1000个20s的场景

● 1400000张相机图像

● 39万次激光雷达扫描

● 两个不同的城市:波士顿和新加坡

● 左侧交通与右侧交通

● 详细地图信息

● 为23个目标类手动注释的1.4M 3D边界框
在这里插入图片描述

2.KITTI

数据集官网:The KITTI Vision Benchmark Suite (cvlibs.net)

ITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,该数据集用于评测立体视觉(stereo)光流(optical flow)视觉测距(visual odometry)3D物体检测(object detection)3D跟踪(tracking)等计算机视觉技术在车载环境下的性能。KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。整个数据集由389对立体图像和光流图,39.2 km视觉测距序列以及超过200k 3D标注物体的图像组成 ,以10Hz的频率采样及同步。总体上看,原始数据集被分类为’Road’, ’City’, ’Residential’, ’Campus’ 和 ’Person’。对于3D物体检测,label细分为car, van, truck, pedestrian, pedestrian(sitting), cyclist, tram以及misc组成。

因为数据量少,目前很多算法验证都在nuscenes上啦~~~
在这里插入图片描述
在这里插入图片描述

3.Wamyo

  • 年份:2020年;

  • 作者:Waymo LLC和Google LLC

  • 场景数:共1150个场景,主要采集自San Francisco,Mountain View,Phoenix等;

  • 类别数:共4类,分别是Vehicles,Pedestrians,Cyclists及Signs;

  • 是否360°采集:是;

  • 数据总量:共包含 2030个片段,每个片段长度为20秒;

  • 标注总数:约12,600,000个3D标注框;

  • 传感器型号:包含1个mid-range LiDAR,4个short-range LiDARs,5个相机(前置及侧面),同时LiDAR和相机是经过同步和标定处理过的;

  • 数据集链接:https://waymo.com/open/;

简介:Waymo是自动驾驶领域最重要的数据集之一,规模很大,主要用以支持自动驾驶感知技术的研究。Waymo主要由两个数据集组成,Perception Dataset及Motion Dataset。其中,Perception Dataset包含3D标注,2D全景分割标注,关键点标注,3D语义分割标注等。Motion Dataset主要用于交互任务的研究,共包含103,354个20s片段,标注了不同物体及对应的3D地图数据。
在这里插入图片描述

4.BDD100K

BDD100K数据集是2018年5月由伯克利大学AI实验室(BAIR)所发布,同时设计了一个图片标注系统。BDD100K数据集包含10万段高清视频,每个视频约40秒/720p/30 fps 。每个视频的第10秒对关键帧进行采样,得到10万张图片,图片分辨率为1280*720,并对其进行标注。数据库集包含了不同天气、场景、时间的图片,具有规模大,多样化的特点。

主要任务:视频可行使区域车道线语义分割实力分割全景分割MOT检测任务Pose等;

数据集链接:Berkeley DeepDrive

在这里插入图片描述

5.Lyft L5数据集

  • 年份:2019年;

  • 作者:Woven Planet Holdings;

  • 场景数:共1805个场景,室外;

  • 类别数:共9类,包括Car,Pedestrian,traffic lights等;

  • 是否360°采集:是;

  • 数据总量:包括46,000张图像数据,及其对应的点云数据

  • 标注总数:约1300,000个3D标注框

  • 传感器型号:包括2个LiDARs,分别是40线和64线,安装在车顶及保险杠上,其分辨率为0.2°,在10Hz下采集约216,000个点。此外,还包括6个360°相机和1个长焦相机,摄像机与LiDAR采集频率一致。

  • 数据集链接:https://level-5.global/data/;

简介:Lyft L5是一整套L5级自动驾驶数据集,据称“业内最大的自动驾驶公共数据集”,涵盖了Prediction Dataset及Perception Dataset。其中Prediction Dataset涵盖了自动驾驶测车队在Palo Alto沿线遇到的各类目标,如Cars,Cyclists和Pedestrians。Perception Dataset则涵盖了自动驾驶车队装置的LiDARs和摄像机采集的真实数据,并通过人工方式标注了大量的3D边界框。

6.H3D数据集

  • 年份:2019年;

  • 作者:Honda Research Institute;

  • 场景数:共160个场景,室外;

  • 类别数:共8类;

  • 是否360°采集:否;

  • 数据总量:包括27,000张图像数据,及其对应的点云数据

  • 标注总数:约1100,000个3D标注框;

  • 传感器型号:共配备了3个相机型号为Grasshopper 3,分辨率均为1920x1200,除了背面的相机FOV为80°,其他的2个相机的FOV为90°,使用了一个64线的LiDAR,型号为Velodyne HDL64E S2,以及一个GNSS+IMU型号为ADMA-G;

数据集链接:http://usa.honda-ri.com/H3D;

简介:本田研究所于2019年3月发布其无人驾驶方向数据集H3D。该数据集使用3D LiDAR扫描仪收集的包括3D多目标检测和跟踪数据,包含160个拥挤且高度互动的交通场景,在27,721帧中有超过100万个标记实例。

主要任务包括:
在这里插入图片描述

7.ApplloScape数据集

  • 年份:2019年;

  • 作者:Baidu Research;

  • 场景数:共103个场景,室外;

  • 类别数:共26类,包括small vehicles,big vehicles,pedestrian,motorcyclist等;

  • 是否360°采集:否;

  • 数据总量:包括143,906张图像数据,及其对应的点云数据

  • 标注总数:标注总数未知;

传感器型号:共配置了2个VUX-1HA laser scanners,6个VMX-CS6相机(其中两个前置相机分辨率为3384x2710),还有一个IMU/GNSS设备;laser scanners利用两束激光来扫描其周围环境,与常用的Velodyne HDL64E相比,scanner可以获得更高密度的点云,同时具备更高精度(5mm/3mm);

数据集链接:http://apolloscape.auto/index.html;

简介:ApolloScape由RGB视频和对应的稠密点云组成。包含超过140K张图片,并且每张图片都有像素级的语义信息。在国内采集的数据,所以相比于国外的一些数据集,ApolloScape数据集包含的交通场景较复杂,各类目标数量较多,且与KITTI数据集类似,同样包含Easy,Moderate,Hard三个子集

主要任务包括:车道线、定位、轨迹预测、检测、跟踪、双目、场景识别等

在这里插入图片描述

8.Argoverse数据集

  • 年份:2019年;

  • 作者:Argo AI等;

  • 场景数:共113个场景,室外,包括USA,Pennsylvania,Miami,Florida等;

  • 类别数:共15类,包括Vehicle,Pedestrian,Stroller,Animal等;

  • 是否360°采集:是;

  • 数据总量:包括44,000张图像数据,及其对应的点云数据;

  • 标注总数

  • 传感器型号:与KITTI及nuScenes相似,Argoverse数据集配置了两个32线LiDAR传感器,型号为VLP-32。同时,包括7个高分辨率环视相机,分辨率为1920x1200,2个前置相机,分辨率为2056x2464;

数据集链接:https://www.argoverse.org/;

主要任务:3D跟踪、运动预测等任务

简介:Argoverse中的数据来自Argo AI的自动驾驶测试车辆在迈阿密和匹兹堡(这两个美国城市面临不同的城市驾驶挑战和当地驾驶习惯)运行的地区的子集。包括跨不同季节,天气条件和一天中不同时间的传感器数据或“日志段”的记录,以提供广泛的实际驾驶场景。其包含了共113个场景的3D跟踪注释,每个片段长度为15-30秒,共计包含11052个跟踪目标。其中,70%的标注对象为车辆,其余对象为行人、自行车、摩托车等;此外,Argoverse包含高清地图数据,主要囊括匹兹堡和迈阿密290公里的车道地图,如位置、连接、交通信号、海拔等信息。

在这里插入图片描述

9.Argoversev2数据集

Argoverse 2是一个开源自动驾驶数据和高清(HD)地图的集合,来自美国六个城市:奥斯汀、底特律、迈阿密、匹兹堡、帕洛阿尔托和华盛顿特区。本次发布建立在Argovverse(“Argoverse1”)的首次发布基础上,Argovverse1是首批包含用于机器学习和计算机视觉研究的高清地图的数据发布之一。

Argoverse 2包括四个开源数据集:

Argoverse 2传感器数据集:包含1000个带有激光雷达、立体图像和环形摄像头图像的3D注释场景。该数据集改进了Argoverse 1 3D跟踪数据集;

Argoverse 2运动预测数据集:包含250000个场景,其中包含许多对象类型的轨迹数据。该数据集改进了Argoverse 1运动预测数据集;

Argoverse 2激光雷达数据集:包含20000个未标记的激光雷达序列;

Argoverse 2地图更改数据集:包含1000个场景,其中200个场景描述了真实世界的高清地图更改!

Argoverse 2数据集共享一种通用的高清地图格式,该格式比Argoverse 1中的高清地图更丰富。Argoverse 2数据集还共享一个通用的API,允许用户轻松访问和可视化数据和地图。
在这里插入图片描述
在这里插入图片描述

10.Occ3D

清华大学和英伟达出品,第一个大规模占用栅格benchmark!

数据集链接:Occ3D: A Large-Scale 3D Occupancy Prediction Benchmark for Autonomous Driving (tsinghua-mars-lab.github.io)

作者生成了两个3D占用预测数据集,Occ3D nuScenes和Occ3D Waymo。Occ3D nuScenes包含600个用于训练的场景、150个用于验证的场景和150个用于测试的场景,总计40000帧。它有16个公共类和一个额外的通用对象(GO)类。每个样本覆盖范围为[-40m、-40m、-1m、40m、40m、5.4m],体素大小为[0.4m、0.4m、0.4m]。Occ3D Waymo包含798个用于训练的序列,202个用于验证的序列,累积了200000帧。它有14个已知的目标类和一个额外的GO类。每个样本覆盖的范围为[-80m、-80m、-1m、80m、80m和5.4m],极细的体素大小为[0.05m、0.05m、0.05m]。

在这里插入图片描述

11.nuPlan

nuPlan是世界上第一个自动驾驶的大规模规划基准,虽然越来越多的基于ML的运动规划人员,但由于缺乏既定的数据集、模拟框架和指标,限制了该领域的进展。自动驾驶汽车运动预测的现有基准(Argovest、Lyft、Waymo)专注于其他智能体的短期运动预测,而不是自我汽车的长期规划。这导致以前的工作使用基于L2的指标进行开环评估,这不适合公平评估长期规划。这个基准测试通过提供一个训练框架来开发基于机器学习的规划者、一个轻量级闭环模拟器、特定于运动规划的指标和一个可视化结果的交互式工具,克服了这些限制。

提供了一个大规模数据集,其中包含来自美国和亚洲4个城市(波士顿、匹兹堡、拉斯维加斯和新加坡)的1200小时人类驾驶数据。数据集使用最先进的Offline Perception系统自动标记。与现有的这种大小的数据集相反,不仅发布了数据集中检测到的对象的3d框,还提供了10%的原始传感器数据(120h)。

数据集链接:nuPlan (nuscenes.org)

在这里插入图片描述

12.ONCE (One Million Scenes)

● 发布方:华为

● 发布时间:2021

● 简介:ONCE(One millioN sCenEs)是自动驾驶场景下的3D物体检测数据集。ONCE 数据集由 100 万个 LiDAR 场景和 700 万个对应的相机图像组成。这些数据选自 144 个驾驶小时,比 nuScenes 和 Waymo 等其他可用的 3D 自动驾驶数据集长 20 倍,并且是在一系列不同的地区、时期和天气条件下收集的。由组成:100 万个 LiDAR 帧,700 万个相机图像 200 平方公里的驾驶区域,144 个驾驶小时 15k 个完全注释的场景,分为 5 个类别(汽车、公共汽车、卡车、行人、骑自行车的人) 多样化的环境(白天/夜晚、晴天/雨天、城市/郊区)。

● 下载地址:https://opendatalab.org.cn/ONCE

● 论文地址:https://arxiv.org/pdf/2106.1103

13.Cityscape

● 发布方:达姆施塔特工业大学 · 马克斯普朗克信息学研究所

● 发布时间:2016

● 简介:Cityscapes是一个大型数据库,专注于对城市街道场景的语义理解。它为分为8个类别 (平面,人类,车辆,构造,对象,自然,天空和虚空) 的30个类提供语义,实例和密集的像素注释。数据集由大约5000个精细注释图像和20000个粗糙注释图像组成。在几个月,白天和良好的天气条件下,在50个城市中捕获了数据。它最初被记录为视频,因此手动选择帧以具有以下功能: 大量动态对象,不同的场景布局和不同的背景。

● 下载地址:https://opendatalab.org.cn/CityScapes

● 论文地址:https://arxiv.org/pdf/1604.0168

14.YouTube Driving Dataset

● 发布方:香港中文大学 · 加州大学

● 发布时间:2022

● 简介:从YouTube上抓取第一视图驾驶视频。收集总长度超过120小时的134视频。这些视频涵盖了具有各种天气条件 (晴天,雨天,下雪等) 和区域 (农村和城市地区) 的不同驾驶场景。每一秒钟采样一个帧,得到130万帧的数据集。将YouTube驾驶数据集分为具有70% 数据的训练集和具有30% 数据的测试集,并在训练集上进行ACO的训练。

● 下载地址:https://opendatalab.org.cn/YouTube_Driving_Dataset

● 论文地址:https://arxiv.org/pdf/2204.02393.pdf

15. A2D2

● 发布方:奥迪

● 发布时间:2020

● 简介:我们已经发布了奥迪自动驾驶数据集 (A2D2),以支持从事自动驾驶的初创公司和学术研究人员。为车辆配备多模式传感器套件,记录大型数据集并对其进行标记是耗时且费力的。A2D2数据集消除了这种高进入壁垒,并使研究人员和开发人员可以专注于开发新技术。数据集具有2D语义分割,3D点云,3D边界框和车辆总线数据

● 下载地址:https://opendatalab.org.cn/A2D2

● 论文地址:https://arxiv.org/pdf/2004.0632

16.Cam2BEV

● 发布方:亚琛工业大学

● 发布时间:2020

该数据集包含两个合成的、语义分割的道路场景图像子集,它们是为开发和应用论文“A Sim2Real Deep Learning Approach for the Transformation of Images from Multiple Vehicle-Mounted Cameras to a Semantically Segmented”中描述的方法而创建的。该数据集可以通过 Github 上描述的 Cam2BEV 方法的官方代码实现来使用。

数据集链接:Cam2BEV-OpenDataLab

17.SemanticKITTI

● 发布方:波恩大学

● 发布时间:2019

这是一个基于 KITTI Vision Benchmark 的大规模数据集,并使用了里程计任务提供的所有序列。我们为序列 00-10 的每个单独扫描提供密集注释,这使得能够使用多个顺序扫描进行语义场景解释,如语义分割和语义场景补全。剩余的序列,即序列 11-21,被用作测试集,显示大量具有挑战性的交通情况和环境类型。未提供测试集的标签,我们使用评估服务对提交进行评分并提供测试集结果。

● 下载地址:https://opendatalab.org.cn/SemanticKITTI

● 论文地址:https://arxiv.org/pdf/1904.0141

18. OpenLane

● 发布方:上海人工智能实验室 · 上海交通大学 · 商汤科技研究所

● 发布时间:2022

OpenLane 是迄今为止第一个真实世界和规模最大的 3D 车道数据集。我们的数据集从公共感知数据集 Waymo Open Dataset 中收集有价值的内容,并为 1000 个路段提供车道和最近路径对象(CIPO)注释。简而言之,OpenLane 拥有 200K 帧和超过 880K 仔细注释的车道。我们公开发布了 OpenLane 数据集,以帮助研究界在 3D 感知和自动驾驶技术方面取得进步。

● 下载地址:https://opendatalab.org.cn/OpenLane

● 论文地址:https://arxiv.org/pdf/2203.11089.pdf

19. OpenLane-V2

● 发布方:上海人工智能实验室

● 发布时间:2023

全球首个自动驾驶道路结构感知和推理基准。数据集的首要任务是场景结构感知和推理,这需要模型能够识别周围环境中车道的可行驶状态。该数据集的任务不仅包括车道中心线和交通要素检测,还包括检测到的对象的拓扑关系识别。

● 下载地址:https://opendatalab.org.cn/OpenLane-V2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/873560.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从AI到人机再到人机环:十年四本书

写这四本书的初衷还是得从剑桥图书馆说起,自从2012年来到剑桥逐渐适应了这里的环境和学术氛围以后,除了与朋友们聚会聊天,就是准备好矿泉水和面包,到学校各个图书馆里去看书、找书、借书了。记得那是2013年春天的一个下午&#xf…

HLS+System Generator实现FIR低通滤波器

硬件:ZYNQ7010 软件:MATLAB 2019b、Vivado 2017.4、HLS 2017.4、System Generator 2017.4 1、MATLAB设计低通滤波器 FPGA系统时钟 50MHz,也是采样频率。用 MATLAB 生成 1MHz 和 10MHz 的正弦波叠加的信号,并量化为 14bit 整数。把…

Word(1):文章页码设置

1.需求 在文档的封皮页不设置页码,在目录页页码设置为罗马数字,在正文使用阿拉伯数字。 2.解决方法 step1: 在封皮页的最后,点击”插入“-分隔符-分节符(下一页) step2:在目录页的最后&…

掌握这5本书,转行程序员不再难

后台收到读者提问: 我想转行程序员,请推荐几本可以帮助我转行成功的书。 我自己也是大学毕业后,自学转行程序员的,走了很多的弯路。下面几本书,给了我很多帮助。 1、推荐图书 以下是5本可以帮助你转行成为…

24届近3年上海电力大学自动化考研院校分析

今天给大家带来的是上海电力大学控制考研分析 满满干货~还不快快点赞收藏 一、上海电力大学 学校简介 上海电力大学(Shanghai University of Electric Power),位于上海市,是中央与上海市共建、以上海市管理为主的全日…

2023“钉耙编程”中国大学生算法设计超级联赛(5)

Typhoon 计算几何,点到线段距离 String Magic (Easy Version) Manacher可持久化线段树 Touhou Red Red Blue DP 模拟 Expectation (Easy Version) 签到,组合数学 Tree 树形DP Cactus Circuit 仙人掌图,tarjan找简单环 Counting Stars 暴力…

8.13 刷题记录(4道题)

8.13 刷题记录 6. 反转链表方法一&#xff1a; 迭代方法二&#xff1a;递归 7. 合并两个排序的链表8. 复杂链表的复刻9. 二叉搜索树与双向链表 6. 反转链表 原题链接 方法一&#xff1a; 迭代 1 -> 2 -> 3 -> 4 i j 1 <- 2 -> 3 -> 4 i j 就像这样迭代 /…

每日一题——旋转数组的最小数字(II)

旋转数组的最小数字——II 题目链接 注&#xff1a;此题是昨天旋转数组的最小数字——I的拓展延伸&#xff0c;昨天题目数组的条件是不会存在重复元素&#xff0c;而本题数组的元素可以重复&#xff0c;因此建议先做前面一题&#xff0c;进行思考&#xff0c;这样求解这一题的…

python print单引号和双引号区别

python中单引号和双引号有什么区别 942次阅读 没有评论 单引号和双引号 在Python中我们都知道单引号和双引号都可以用来表示一个字符串&#xff0c;比如 str1 python str2 "python" str1和str2是没有任何区别的。但是如果遇到需要转义字符的情况&#xff0c;来…

面试热题(反转字符串中的单词)

给你一个字符串 s &#xff0c;请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。 注意&#xff1a;输入字符串 s中可能会存在前导空格、尾随空格…

Skeleton-Aware Networks for Deep Motion Retargeting

Skeleton-Aware Networks for Deep Motion Retargeting解析 摘要1. 简介2. Related Work2.1 运动重定向&#xff08;Motion Retargeting&#xff09;2.2 Neural Motion Processing 3. 概述&#xff08;Overview&#xff09;4. 骨骼感知深度运动处理4.1 运动表征4.2 骨架卷积4.3…

《论文阅读12》RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

一、论文 研究领域&#xff1a;全监督3D语义分割&#xff08;室内&#xff0c;室外RGB&#xff0c;kitti&#xff09;论文&#xff1a;RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds CVPR 2020 牛津大学、中山大学、国防科技大学 论文链接论文gi…

pyqt5多线程(子线程执行将结果返回到主线程上,提示对话框)

pyqt5多线程&#xff08;子线程执行将结果返回到主线程上&#xff0c;提示对话框&#xff09; 1.为什么要多线程执行 在主线程ui界面点击登录后&#xff0c;加延时10s,&#xff08;模拟调用接口登录&#xff0c;假设耗时10s&#xff09;,ui主线程在等待请求返回结果&#xff…

Es、kibana安装教程-ES(二)

上篇文章介绍了ES负责数据存储&#xff0c;计算和搜索&#xff0c;他与传统数据库不同&#xff0c;是基于倒排索引来解决问题的。Kibana是es可视化工具。 分布式搜索ElasticSearch-ES&#xff08;一&#xff09; 一、ElasticSearch安装 官网下载地址&#xff1a;https://www…

Kotlin runBlocking launch多个协程读写mutableListOf时序

Kotlin runBlocking launch多个协程读写mutableListOf时序 import kotlinx.coroutines.delay import kotlinx.coroutines.launch import kotlinx.coroutines.runBlockingfun main(args: Array<String>) {var lists mutableListOf<String>()runBlocking {launch {r…

jsoup解析html之table表格

jsoup解析html之table表格 jsoup说明 一款Java 的HTML解析器 jsoup 是一款Java 的HTML解析器&#xff0c;可直接解析某个URL地址、HTML文本内容。它提供了一套非常省力的API&#xff0c;可通过DOM&#xff0c;CSS以及类似于jQuery的操作方法来取出和操作数据。 主要功能 从一…

Mac M2 Pro安装使用Cocoapods

Mac Pro M2安装使用Cocoapods 在新公司要做iOS开发&#xff0c;所以在新电脑上安装Cocoapods 在升级gem&#xff0c;sudo gem update --system&#xff0c;和安装cocoapods时都遇到如下的提示&#xff1a; ERROR: While executing gem ... (Errno::EPERM)Operation not per…

【MybatisPlus】LambdaQueryWrapper和QueryWapper的区别

个人主页&#xff1a;金鳞踏雨 个人简介&#xff1a;大家好&#xff0c;我是金鳞&#xff0c;一个初出茅庐的Java小白 目前状况&#xff1a;22届普通本科毕业生&#xff0c;几经波折了&#xff0c;现在任职于一家国内大型知名日化公司&#xff0c;从事Java开发工作 我的博客&am…

input 设置type=“number“,鼠标悬停关闭提示语

一、问题 最近刚发现input 设置type"number"之后&#xff0c;鼠标悬停会出现提示语&#xff1a;请输入有效值。两个最接近的有效值分别为xx和xx。想要输入的值确实为number格式&#xff0c;又可以输入小数&#xff0c;不限制小数位&#xff0c;所以要把这讨厌的提示去…

最小路径和——力扣64

文章目录 题目描述动态规划题目描述 动态规划 class Solution {public:int minPathSum(vector<vector<int>>