题目来源:https://leetcode.cn/problems/coin-change-ii/description/
C++题解(来源代码随想录): 这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!
注意题目描述中是凑成总金额的硬币组合数,组合不强调元素之间的顺序,排列强调元素之间的顺序。 动规五步曲:
- 确定dp数组以及下标的含义。dp[j]:凑成总金额j的货币组合数为dp[j]
- 确定递推公式。dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。所以递推公式:dp[j] += dp[j - coins[i]];
- dp数组如何初始化。首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]。dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。
- 确定遍历顺序。本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),这种遍历顺序中dp[j]里计算的是组合数!反之则为排列数。
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。