matlab使用教程(13)—稀疏矩阵创建和使用

news2024/11/24 2:31:45
        使用稀疏矩阵存储包含众多零值元素的数据,可以节省大量内存并加快该数据的处理速度。sparse 是一种属性,可以将该属性分配给由 double logical 元素组成的任何二维 MATLAB 矩阵。通过 sparse 属性,MATLAB 可以:
        • 仅存储矩阵中的非零元素及其索引。
        • 不必对零元素执行运算,从而减少计算时间。
        对于满矩阵,MATLAB 将在内部存储每个矩阵元素。零值元素与任何其他矩阵元素需要的存储空间量相同。但是,对于稀疏矩阵,MATLAB 只会存储非零元素及其索引。对于零值元素百分比很高的大型矩阵,此方案可以极大地减少存储数据所需的内存量。whos 命令提供有关矩阵存储的高级信息,包括大小和存储类。例如,以下的 whos 列表显示了有关同一矩阵的稀疏版本和完全版本的信息。
M_full = magic(1100); % Create 1100-by-1100 matrix.
M_full(M_full > 50) = 0; % Set elements >50 to zero.
M_sparse = sparse(M_full); % Create sparse matrix of same.
whos
Name Size Bytes Class Attributes
M_full 1100x1100 9680000 double
M_sparse 1100x1100 9608 double sparse
        请注意,稀疏矩阵中使用的字节数较少,因为零值元素未被存储。
        在计算效率方面,稀疏矩阵也具有显著的优点。与满矩阵的运算不同,稀疏矩阵的运算不会执行不必要的低级算术操作,例如加零( x+0 始终为 x )。这样便可大大缩短处理大量稀疏数据的程序的执行时间。

1.创建稀疏矩阵

        MATLAB 从不会自动创建稀疏矩阵。相反,还必须确定矩阵中是否包含足够高百分比的零元素,以便利用稀疏方法。
        矩阵的密度是指非零元素数目除以矩阵元素总数。对于矩阵 M ,这将为
nnz(M) / prod(size(M));
        或
nnz(M) / numel(M);
        密度非常低的矩阵通常很适合使用稀疏格式。

1.1将满矩阵转换为稀疏矩阵

        可以使用带有单个参数的 sparse 函数将满矩阵转换为稀疏存储。例如:
A = [ 0 0 0 5
0 2 0 0
1 3 0 0
0 0 4 0];
S = sparse(A)
S =
(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5
        列显输出中列出了 S 的非零元素及其行索引和列索引。这些元素按列排序,反映了内部数据结构体。如果矩阵阶数不太高,可以使用 full 函数将稀疏矩阵转换为满存储。例如, A = full(S) 可反向转换该示例。
        将满矩阵转换为稀疏存储并非生成稀疏矩阵的最常用方法。如果矩阵的阶数足够低可以进行满存储,则转换为稀疏存储很难显著节省内存。

1.2直接创建稀疏矩阵

        可以使用带有五个参数的 sparse 函数,基于一列非零元素来创建稀疏矩阵。
S = sparse(i,j,s,m,n)
        i j 分别是矩阵中非零元素的行索引和列索引的向量。 s 是由对应的 (i,j) 对指定索引的非零值的向量。 m 是生成的矩阵的行维度, n 是其列维度。前一示例中的矩阵 S 可以直接通过以下表达式生成
S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)
S =
(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5
        sparse 命令具有许多备用形式。上面示例使用的形式将矩阵中的最大非零元素数设置为 length(s)。如果需要,可以追加第六个参数用来指定更大的最大数,这样能在以后添加非零元素,而不必重新分配稀疏矩阵。
        二阶微分算子的矩阵表示形式就是一个很好的稀疏矩阵示例。它是一个三对角矩阵,其中 -2s 在对角线上,1s 在上对角线和下对角线上。有多种方式生成此类炬阵,这里只是一种可能性。
n = 5;
D = sparse(1:n,1:n,-2*ones(1,n),n,n);
E = sparse(2:n,1:n-1,ones(1,n-1),n,n);
S = E+D+E'
S =
(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
(5,4) 1
(4,5) 1
(5,5) -2
        现在,F = full(S) 显示相应的满矩阵。
F = full(S)
F =
-2 1 0 0 0
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
0 0 0 1 -2

1.3基于稀疏矩阵的对角线元素创建稀疏矩阵

        基于稀疏矩阵的对角线元素创建稀疏矩阵是一种常用操作,因此函数 spdiags 可以处理此任务。其语法是
S = spdiags(B,d,m,n)
        要创建大小为 m×n 且元素在 p 对角线上的输出矩阵 S
        • B 是大小为 min(m,n) ×p 的矩阵。 B 的列是用于填充 S 对角线的值。
        • d 是长度 p 的向量,其整数元素可以指定要填充的 S 对角线。
        即,B 的列 j 中的元素填充 d 的元素 j 指定的对角线。
        注意 如果 B 的列长度超过所替换的对角线,则上对角线从 B 列的下部获取,下对角线从 B 列的上部获取。例如,考虑使用矩阵 B 和向量 d
B = [ 41 11 0
52 22 0
63 33 13
74 44 24 ];
d = [-3
0
2];
        使用这些矩阵创建 7×4 稀疏矩阵 A
A = spdiags(B,d,7,4)
A =
(1,1) 11
(4,1) 41
(2,2) 22
(5,2) 52
(1,3) 13
(3,3) 33
(6,3) 63
(2,4) 24
(4,4) 44
(7,4) 74
        在其满矩阵形式中,A 类似于:
full(A)
ans =
11 0 13 0
0 22 0 24
0 0 33 0
41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74
        spdiags 还可以从稀疏矩阵中提取对角线元素,或将矩阵对角线元素替换为新值。键入 help spdiags 以了解详细信息。

1.4导入稀疏矩阵

        可以在 MATLAB 环境外部通过计算导入稀疏矩阵。结合使用 spconvert 函数与 load 命令导入包含索引和非零元素列表的文本文件。例如,考虑使用三列文本文件 T.dat,它的第一列是行索引列表,第二列是列索引列表,第三列是非零值列表。这些语句将 T.dat 加载到 MATLAB 中并将其转换为稀疏矩阵 S
load T.dat
S = spconvert(T)
        save load 命令还可以处理作为 MAT 文件中的二进制数据存储的稀疏矩阵。

2.访问稀疏矩阵

2.1非零元素

        以下多条命令可以提供有关稀疏矩阵的非零元素的概要信息:
        • nnz 返回稀疏矩阵中的非零元素数。
        • nonzeros 返回包含稀疏矩阵的所有非零元素的列向量。
        • nzmax 返回为稀疏矩阵的非零项分配的存储空间量。
        要尝试上述中的一些命令,请加载提供的稀疏矩阵 west0479 ,该矩阵是 Harwell-Boeing 集合之一。
load west0479
whos
Name Size Bytes Class Attributes
west0479 479x479 34032 double sparse
        该矩阵为八个阶段的化工精馏塔建模。尝试以下命令。
nnz(west0479)
ans =
1887
format short e
west0479
west0479 =
(25,1) 1.0000e+00
(31,1) -3.7648e-02
(87,1) -3.4424e-01
(26,2) 1.0000e+00
(31,2) -2.4523e-02
(88,2) -3.7371e-01
(27,3) 1.0000e+00
(31,3) -3.6613e-02
(89,3) -8.3694e-01
(28,4) 1.3000e+02
nonzeros(west0479)
ans =
1.0000e+00
-3.7648e-02
-3.4424e-01
1.0000e+00
-2.4523e-02
-3.7371e-01
1.0000e+00
-3.6613e-02
-8.3694e-01
1.3000e+02
.
        注意 使用 Ctrl+C 随时停止列出 nonzeros
        请注意,最初在默认情况下,nnz nzmax 的值相同。即,非零元素数等于为非零元素分配的存储位置数。但是,如果将其他的数组元素置零,MATLAB 不会动态释放内存。将某些矩阵元素的值更改为零时会更改 nnz 的值,但不会更改 nzmax 的值。但是,可以根据需要将尽可能多的非零元素添加到矩阵中。不受 nzmax 原始值的限制。

2.2索引和值

        对于任何矩阵,无论是满矩阵还是稀疏矩阵,find 函数都会返回非零元素的索引和值。其语法是
[i,j,s] = find(S);
        find 返回向量 i 中的非零值的行索引、向量 j 中的列索引以及向量 s 中的自身非零值。下面的示例使用find 查找稀疏矩阵中的非零索引和值。 sparse 函数同时使用 find 输出和矩阵大小重新创建矩阵。
S1 = west0479;
[i,j,s] = find(S1);
[m,n] = size(S1);
S2 = sparse(i,j,s,m,n);

2.3稀疏矩阵运算中的索引

        由于稀疏矩阵是以压缩稀疏列格式存储的,因此为稀疏矩阵进行索引的相关成本与为满矩阵进行索引的相关成本不同。在只需更改稀疏矩阵中的若干元素时,这类成本可忽略不计,因此,在这类情况下,通常使用常规数组索引来重新分配值:
B = speye(4);
[i,j,s] = find(B);
[i,j,s]
ans =
1 1 1
2 2 1
3 3 1
4 4 1
B(3,1) = 42;
[i,j,s] = find(B);
[i,j,s]
ans =
1 1 1
3 1 42
2 2 1
3 3 1
4 4 1
        在存储新矩阵时,为使 42 位于 (3,1) 位置,MATLAB 会在非零值向量和下标向量中插入额外的一行,然后移动 (3,1) 后面的所有矩阵值。如果线性索引超过 2^48-1(即当前矩阵中允许的元素数上限),使用线性索引在大型稀疏矩阵中访问或指定元素将失败。
S = spalloc(2^30,2^30,2);
S(end) = 1
Maximum variable size allowed by the program is exceeded.
        要访问其线性索引大于 intmax 的元素,请使用数组索引:
S(2^30,2^30) = 1
S =
(1073741824,1073741824) 1
        尽管在稀疏矩阵中进行索引以更改单个元素的成本可忽略不计,但该成本在循环环境下会增加,而且在大型矩阵中该操作可能会使执行速度变得很慢。因此,在需要更改大量稀疏矩阵元素的情况下,最好使用向量化方法而不要使用循环方法来执行该操作。例如,考虑稀疏单位矩阵:
n = 10000;
A = 4*speye(n);
        以循环方式更改 A 的元素慢于类似的向量化运算:
tic
A(1:n-1,n) = -1;
A(n,1:n-1) = -1;
toc
Elapsed time is 0.003344 seconds.
tic
for k = 1:n-1
C(k,n) = -1;
C(n,k) = -1;
end
toc
Elapsed time is 0.448069 seconds.
        由于 MATLAB 以压缩稀疏列格式存储稀疏矩阵,因此,在循环的每个遍历期间,它都需要移动 A 中的多个条目。如果为稀疏矩阵预分配内存,然后以类似的逐个元素的方式填充,会使对稀疏数组进行索引产生大量开销:
S1 = spalloc(1000,1000,100000);
tic;
for n = 1:100000
i = ceil(1000*rand(1,1));
j = ceil(1000*rand(1,1));
S1(i,j) = rand(1,1);
end
toc
Elapsed time is 2.577527 seconds.
        构建索引和值向量则无需为稀疏数组进行索引,因此这种方法的速度快得多:
i = ceil(1000*rand(100000,1));
j = ceil(1000*rand(100000,1));
v = zeros(size(i));
for n = 1:100000
v(n) = rand(1,1);
end
tic;
S2 = sparse(i,j,v,1000,1000);
toc
Elapsed time is 0.017676 seconds.
        因此,最好使用构造函数(例如 sparse spdiags 函数)一次构造所有稀疏矩阵。例如,假定需要稀疏形式的坐标矩阵 C
4 0 0 0 −1
0 4 0 0 −1
C = 0 0 4 0 −1
0 0 0 4 −1
1 1 1 1 4
        使用 sparse 函数,以及行下标、列下标和值组成的三联对组,直接构造该五列矩阵:
i = [1 5 2 5 3 5 4 5 1 2 3 4 5]';
j = [1 1 2 2 3 3 4 4 5 5 5 5 5]';
s = [4 1 4 1 4 1 4 1 -1 -1 -1 -1 4]';
C = sparse(i,j,s)
C =
(1,1) 4
(5,1) 1
(2,2) 4
(5,2) 1
(3,3) 4
(5,3) 1
(4,4) 4
(5,4) 1
(1,5) -1
(2,5) -1
(3,5) -1
(4,5) -1
(5,5) 4
        输出中值的顺序反映了底层的按列存储。

2.4可视化稀疏矩阵

        以图的形式查看非零元素在稀疏矩阵内的分布通常很有用。MATLAB spy 函数生成稀疏结构的模板视图,其中图表中的每点代表一个非零数组元素的位置。例如:加载提供的稀疏矩阵 west0479 ,该矩阵是 Harwell-Boeing 集合之一。
load west0479
        查看稀疏结构体。
spy(west0479)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/866094.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vector - CAPL - 诊断模块函数(流控制帧续)

目录 CanTpGetFirstSequenceNumber & CanTpSetFirstSequenceNumber 代码示例 CanTpIsUseFlowControlSTmin & CanTpIsUseFlowControlSTmin & CanTpUseFlowControlSTmin CanTpIsUseFlowControlFrames & CanTpUseFlowControlFrames 代码示例 CanTpSetFlowC…

网神 SecGate 3600 防火墙任意文件上传漏洞

网神 SecGate 3600 防火墙任意文件上传漏洞 一、 产品简介二、 漏洞概述三、 影响范围四、 复现环境五、 漏洞复现PoC上传哥斯拉马子小龙POC检测: 六、 修复建议 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具…

【网络编程·网络层】IP协议

目录 一、IP协议的概念 二、IP协议的报头 1、四位首部长度 2、16位总长度(解包) 3、8位协议(分用) 4、16位首部校验和 5、8位生存时间 6、32位源IP和32位目的IP 7、4位版本/8位服务类型 8、16位标识 9、3位标志 10、1…

聊一下互联网开源变现

(点击即可收听) 互联网开源变现其实是指通过开源软件或者开放源代码的方式,实现收益或盈利。这种方式越来越被广泛应用于互联网行业 在互联网开源变现的模式中,最常见的方式是通过捐款、广告、付费支持或者授权等方式获利。 例如,有些开源软件…

SQL | 排序检索的数据

3-排序检索的数据 使用order by语句排序检索到的数据。 3.1-排序数据 使用SQL语句返回一个数据表的列。 select prod_id from products; --------------------- | prod_name | --------------------- | 8 inch teddy bear | | 12 inch teddy bear | | 18 inch teddy bear |…

springboot开发的悠点装饰后台管理系统java公司装修设计jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 springboot开发的悠点装饰后台管理系统 系统有1权限&…

IPv4编址及子网划分

IPv4编址及子网划分 一、IPv4地址概述1.1、IPv4报文结构1.2、IPv4地址分类1.2.1、A类1.2.2、B类1.2.3、C类1.2.4、D类1.2.5、E类 1.3、私有IP地址1.4、特殊地址 二、子网划分2.1、子网掩码2.2、VLSM 可变长的子网掩码2.3、子网划分2.4、子网划分示例2.4.1、子网划分案例 —— A…

本地以图搜图软件xiSearch-flet

本地以图搜图软件xiSearch-flet 简介 使用 sentence_transformers flet 实现 项目地址:https://github.com/xjhqre/xiSearch-flet 使用说明 1、启动程序,进入设置页面,设置特征文件保存地址 2、进入特征提取页面,输入要提取…

7个顶级开源数据集来训练自然语言处理(NLP)和文本模型

推荐:使用 NSDT场景编辑器快速助你搭建可二次编辑的3D应用场景 NLP现在是一个令人兴奋的领域,特别是在像AutoNLP这样的用例中,但很难掌握。开始使用NLP的主要问题是缺乏适当的指导和该领域的过度广度。很容易迷失在各种论文和代码中&#xff…

日常BUG——SpringBoot模糊映射

😜作 者:是江迪呀✒️本文关键词:日常BUG、BUG、问题分析☀️每日 一言 :存在错误说明你在进步! 一、问题描述 SpringBoot在启动时报出如下错误: Caused by: java.lang.IllegalStateExceptio…

如何预防ssl中间人攻击?

当我们连上公共WiFi打开网页或邮箱时,殊不知此时可能有人正在监视着我们的各种网络活动。打开账户网页那一瞬间,不法分子可能已经盗取了我们的银行凭证、家庭住址、电子邮件和联系人信息,而这一切我们却毫不知情。这是一种网络上常见的“中间…

集合数据类型

非数字型 列表[](其他语言叫数组) 注意点:第一个成员的索引编号为0,不能访问不存在的索引编号 # list是列表变量名,列表中有三个成员 list[刘备,曹操,关羽] print(list[0]) print(list[1]) print(list[2]) print(li…

[GAN] 使用GAN网络进行图片生成的“调参人”入门指南——生成向日葵图片

[GAN] 使用GAN网络进行图片生成的“炼丹人”日志——生成向日葵图片 文章目录 [GAN] 使用GAN网络进行图片生成的“炼丹人”日志——生成向日葵图片1. 写在前面:1.1 应用场景:1.2 数据集情况:1.3 实验原理讲解和分析(简化版&#x…

案例14 Spring MVC文件上传案例

基于Spring MVC实现文件上传&#xff1a; 使用commons-fileupload实现上传文件到本地目录。 实现上传文件到阿里云OSS和从阿里云OSS下载文件到本地。 1. 创建项目 选择Maven快速构建web项目&#xff0c;项目名称为case14-springmvc03。 ​ 2. 配置Maven依赖 <?xml ver…

CTF-Flask-Jinja2(持续更新)

放心&#xff0c;我会一直陪着你 一.知识一.在终端的一些指令1.虚拟环境2.docker容器二.SSTI相关知识介绍1.魔术方法2.python如何执行cmd命令3.SSTI常用注入模块(1)文件读取(2)内建函数eval执行命令(3)os模块执行命令(4)importlib类执行命令(5)linecache函数执行命令(6)subproc…

大语言模型 GPT历史简介

得益于数据、模型结构以及并行算力的发展&#xff0c;大语言模型应用现今呈井喷式发展态势&#xff0c;大语言神经网络模型成为了不可忽视的一项技术。 GPT在自然语言处理NLP任务上取得了突破性的进展&#xff0c;扩散模型已经拥有了成为下一代图像生成模型的代表的潜力&#x…

Spring项目整合过滤链模式~实战应用

代码下载 设计模式代码全部在gitee上,下载链接: https://gitee.com/xiaozheng2019/desgin_mode.git 日常写代码遇到的囧 1.新建一个类,不知道该放哪个包下 2.方法名称叫A,干得却是A+B+C几件事情,随时隐藏着惊喜 3.想复用一个方法,但是里面嵌套了多余的逻辑,只能自己拆出来…

4.3、Flink任务怎样读取Kafka中的数据

目录 1、添加pom依赖 2、API使用说明 3、这是一个完整的入门案例 4、Kafka消息应该如何解析 4.1、只获取Kafka消息的value部分 ​4.2、获取完整Kafka消息(key、value、Metadata) 4.3、自定义Kafka消息解析器 5、起始消费位点应该如何设置 ​5.1、earliest() 5.2、lat…

wsl2安装mysql环境

安装完mysql后通过如下命令启动mysql service mysql start 会显示如下错误&#xff1a; mysql: unrecognized service 实际上上面显示的错误是由于mysql没有启动成功造成的 我们要想办法成功启动mysql才可以 1.通过如下操作就可以跳过密码直接进入mysql环境 2.如果想找到my…

cesium学习记录07-实体(Entity)

在学习记录05中&#xff0c;我们将了如何在 Cesium 中加载各种数据&#xff0c;包括矢量数据、影像图层、地形和 3D 模型。这些数据为我们构建了一个基础的场景和背景。特别是在加载 3D 模型时&#xff0c;我们采用了 viewer.scene.primitives.add 方法将模型作为一个原始对象添…