实验项目一:【文本反爬网站的分析和爬取】

news2024/11/18 19:42:31

一、实验目的

        熟悉使用Selenium、Pyppeteer等工具爬取网站基本内容,通过分析具有文本反爬技术网站,设计爬取策略来获取文本正确的内容。


二、实验预习提示

  • 安装Python环境 (Python 3.x):Pychram社区版+Anaconda
  • 为Python安装Selenium、PyQuery库(打开pycharm新建项目,选择Anaconda创建的Python环境,在下面对应Console窗口执行):
pip install selenium
pip install pyquery
  • 安装Chrome和对应ChromeDriver:

        下载安装完后查看Chrome版本:点击 Chrome 的菜单,帮助 -> 关于 Chrome,即可查看 Chrome 的版本号105.0.5195.127,如图所示:

 在ChromeDriver 官方网站ChromeDriver - WebDriver for Chrome - Downloads (chromium.org)下载Chrome版本对应的驱动(105.0.5195.x, 看主版本号105都行),点击下划线的链接,根据系统型号下载。windows下chromedriver_win32.zip,其他系统找到对应版本下载:

 运行代码前配置系统环境变量Path前指定chrome driver位置:

Path=替换为chrome driver解压后的位置

或者在Pycharm运行配置指定:


三、实验内容

爬取网站:Scrape | Book

使用浏览器开发者工具(F12),分析网站结构和其中文本反爬机制,编码实现获取该网站每本书的封面图片URL、书名和作者信息。实验基框架代码见文档末资料。


 四、实验要求

        基本要求(60分):将网站一页每本书的信息保存在一个josn文件中,每个json文件命名为:书名.json,其内容为保存书籍相应的信息:

{
  "title": "Wonder",
  "cover_url":"https://img1.doubanio.com/view/subject/l/public/s27252687.jpg",
  "authors":"R. J. Palacio"
}

        实现方法不一定要用Selenium、Pyppeteer,但是必须是Python编写的,并以完成实验要求为准,并附上代码运行结果。

        改进要求A80分,选做)在完成基本要求的基础上,选项一:实现可以遍历网站的每一页来爬取书籍信息。或指定爬取条目数量,当爬取总条目满足数量后停止爬取。选项二:或者举例至少三个其他网站的文本爬虫技术,分析并给出解决方案,不需要实现。

        改进要求B(100分,选做):在完成改进要求A的选项一的基础上,可以爬取书籍的额外信息,如评分,出版时间,出版社,ISBM, 价格等。


 五、实验过程

1. 基本要求:

        想要爬取网页内容,首先得分析网页结构,查看源代码如下图所示,

  • 点击封面有对应该书得二级页面(详情)后半部分地址(改进要求B用);
  • 书的封面URL可以用img.class查询;
# 获取书籍封面图片url
for tag in soup.select("img.cover"):
    pics.append(tag.attrs['src'])

  • 书名都在h3标题中,如果是英文书名,直接h3.name即可,但中文书名由多个class="char"的SPAN元素组成,这里用到了文本反爬机制,利用CSS控制文本偏移来实现文本顺序改变。但不难发现其文本偏移由left属性决定原文正确顺序,因此需要按偏移left属性值大小升序排序获取正确的文本顺序。
# 获取书籍名字
for tag in soup.select("h3.name"):
    if "whole" in tag.attrs['class']:
        names.append(tag.text)
    else:
        chars = tag.select("span.char")
        chars = sorted(chars, key=lambda a: eval(a.attrs['style'][6:-3]))
        name = ""
        for char in chars:
            name += char.text.strip()
        names.append(name)
  • 作者可以直接p.class查询
# 获取作者名字
for tag in soup.select("p.authors"):
    authors.append(tag.text.strip().replace(" ", "").replace("\n", ""))

2. 改进要求A

        这里实现的是选项一:实现可以遍历网站的每一页来爬取书籍信息。从游览器url: https://antispider3.scrape.center/page/2 得之每页都是在后边加/page/页数,这不难实现,就是写个文本数字追加到url后即可;

url = "https://antispider3.scrape.center/page/"
page_start = int(input("请指定爬取起始页(包含该页):"))
page_end = int(input("请指定爬取结束页(不包含该页):"))
for i in range(page_start, page_end):
    names, pics, authors, links = get_cover(url + str(i))

         指定爬取条目数量,当爬取总条目满足数量后停止爬取,这个就是在循环爬取写个计数器,爬取到指定数目,break即可,但只得注意的是:指定数量超过一页18条时,继续下一页爬取,也可以直接加在上述代码里,把结束页可以给的很大,用计数器break即可,不会造成伪死循环。

3. 改进要求B:

        从上图页面分析得知:每本书得二级页面都是在https://antispider3.scrape.center后加/detail/数字,该部分网址在a标签得href属性里,由于页面里超链接很多,所以先find_all出div下的class=el-col el-col-24,这里用得class_是为了解决class是python中的关键字问题,爬取后与原始url拼接即可。

# 获取每本书对用url(二级页面)
tags = soup.find_all('div', class_='el-col el-col-24')
print(len(tags))
for tag in [tags[i] for i in range(len(tags)) if i % 2 == 0]:
    link = tag.find('a').get('href')
    links.append(url1 + link)
print(links)

        现在得到了每本书得二级页面得url,就可以分析二级页面页面结构,来爬取相应书籍信息,分析如下所示:

         二级页面结构其实还是清新明了的,出了评分时span标签,再其他都是p标签,这里只爬取了上图标注的信息数据,再爬取其他的都是一样的,换汤不换药,其实就换个class就OK,这里不做过多介绍。

         由于爬取页面过多,发现问题:有些书籍没有出版社,页数等,所以这里统一用None,没有的数据就用统一添加该字段去空即可,如做特殊处理,识别没有的信息,每个属性都要增加相同的代码,代码冗余度太高,学术水平限制,这里没想到其他好的方法,所以没有做特殊处理。爬取下来的数据由于中间有很多空格与\n,如下所示

        这里就用到77行一系列的替换,使达到想要的格式,其他类似。

        下面介绍主函数部分:

        这里将每本书的二级页面的url赋给对应属性

for link in links:
    print(link)
    score, price, publishtime, publisher, page, isbm = get_details(link)

        这里遍历出每本书的信息保存在以书名为名称的json文件中。

for i in range(len(names)):
    book = {"title": names[i],
            "cover_url": pics[i],
            "authors": authors[i],
            "link": links[i],
            "score": scores[i],
            "price": prices[i],
            "publish_time": publishtimes[i],
            "publishers": publishers[i],
            "pages": pages[i],
            "ISBM": isbms[i]
            }
    data_path = f'{book["title"]}.json'
    json.dump(book, open(data_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)

        最后附上爬取结果:

 本次实现总结:

        计算机专业的课程只理论不实践那就例如纸上谈兵,本次实践说简单也不难,但有些点还是触及我的知识盲区了,例如span char的书名,实践是检验真理的唯一标准。爬虫技术有限,每次爬二级页面都要加载打开,很浪费时间的,后期学了更多的知识,再来解决此问题吧。


六、资料

1.实验框架代码:

from selenium import webdriver
from pyquery import PyQuery as pq
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
browser = webdriver.Chrome()
browser.get('https://antispider3.scrape.center/')
WebDriverWait(browser, 10) \
    .until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.item')))
html = browser.page_source
doc = pq(html)
names = doc('.item .name')
for name in names.items():
    print(name.text())

2.OpenSSL:Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions (slproweb.com)

3.Josn存储,先安装json包:

import json

book = {"title": "Wonder",
    "cover_url":"https://img1.doubanio.com/view/subject/l/public/s27252687.jpg",
    "authors":"R. J. Palacio"
    }

data_path = f'{book["title"]}.json'
json.dump(book, open(data_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)

4.实验小提示

        可以根据HTML结构发现每个书籍信息都保存在。有的书名放在class="name whole"的H3元素,有书名由多个class="char"的SPAN元素组成。对于放在H3元素的书名,直接取出其元素内容即可,而对于放在多个SPAN元素中的书名,这里用到了文本反爬机制,利用CSS控制文本偏移来实现文本顺序改变。但不难发现其文本偏移由left属性决定原文正确顺序,因此需要按偏移left属性值大小升序排序获取正确的文本顺序。


七、源码

import json
import warnings
from selenium import webdriver
from pyquery import PyQuery as pq
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from bs4 import BeautifulSoup

# 定义容器用来存储书籍的信息
names = []  # 书籍名字
authors = []  # 书籍作者
pics = []  # 书籍封面图片
links = []  # 链接
scores = []  # 评分
prices = []  # 定价
publishtimes = []  # 出版时间
publishers = []  # 出版社
pages = []  # 页数
isbms = []  # ISBM


# 获取书籍分面信息与对应书籍二级页面url
def get_cover(url):
    warnings.filterwarnings('ignore')
    browser = webdriver.Chrome()
    browser.get(url)
    WebDriverWait(browser, 10).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.item')))
    html = browser.page_source
    doc = pq(html)
    # 使用BeautifulSoup进行解析网页
    soup = BeautifulSoup(doc.html(), "html.parser")
    browser.close()

    # 获取书籍名字
    for tag in soup.select("h3.name"):
        if "whole" in tag.attrs['class']:
            names.append(tag.text)
        else:
            chars = tag.select("span.char")
            chars = sorted(chars, key=lambda a: eval(a.attrs['style'][6:-3]))
            name = ""
            for char in chars:
                name += char.text.strip()
            names.append(name)

    # 获取作者名字
    for tag in soup.select("p.authors"):
        authors.append(tag.text.strip().replace(" ", "").replace("\n", ""))

    # 获取书籍封面图片url
    for tag in soup.select("img.cover"):
        pics.append(tag.attrs['src'])

    # 获取每本书对用url(二级页面)
    tags = soup.find_all('div', class_='el-col el-col-24')
    print(len(tags))
    for tag in [tags[i] for i in range(len(tags)) if i % 2 == 0]:
        link = tag.find('a').get('href')
        links.append(url1 + link)
    print(links)
    return names, pics, authors, links


# 获取每本书的详细信息(二级页面信息)
def get_details(url):
    warnings.filterwarnings('ignore')
    browser = webdriver.Chrome()
    browser.get(url)
    WebDriverWait(browser, 300).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.item')))
    html = browser.page_source
    doc = pq(html)
    # 使用BeautifulSoup进行解析网页
    soup = BeautifulSoup(doc.html(), "html.parser")

    # 获取评分
    score = soup.find('span', class_='score m-r m-b-sm')
    if score != None:
        score = score.text
        score = str(score).replace(' ', '').replace('\t', '').replace('\n', '')
    else:
        score = ' '
    scores.append(score)

    # 获取定价
    price = soup.find('p', class_='price')
    if price != None:
        price = price.text
        price = str(price).replace(' ', '').replace('\t', '').replace('\n', '').split(':')[1]
    else:
        price = ' '
    prices.append(price)

    # 获取出版时间
    publishtime = soup.find('p', class_='published-at')
    if publishtime != None:
        publishtime = publishtime.text
        publishtime = str(publishtime).replace(' ', '').replace('\t', '').replace('\n', '').split(':')[1]
    else:
        publishtime = ' '
    publishtimes.append(publishtime)

    # 获取出版社
    publisher = soup.find('p', class_='publisher')
    if publisher != None:
        publisher = publisher.text
        publisher = str(publisher).replace(' ', '').replace('\t', '').replace('\n', '').split(':')[1]
    else:
        publisher = ' '
    publishers.append(publisher)

    # 获取页数
    page = soup.find('p', class_='page-number')
    if page != None:
        page = page.text
        page = str(page).replace(' ', '').replace('\t', '').replace('\n', '').split(':')[1]
    else:
        page = ' '
    pages.append(page)

    # 获取ISBM
    isbm = soup.find('p', class_='isbn')
    if isbm != None:
        isbm = isbm.text
        isbm = str(isbm).replace(' ', '').replace('\t', '').replace('\n', '').split(':')[1]
    else:
        isbm = ' '
    isbms.append(isbm)
    browser.close()
    return score, price, publishtime, publisher, page, isbm


if __name__ == '__main__':
    url1 = "https://antispider3.scrape.center"
    url = "https://antispider3.scrape.center/page/"
    page_start = int(input("请指定爬取起始页(包含该页):"))
    page_end = int(input("请指定爬取结束页(不包含该页):"))
    for i in range(page_start, page_end):
        names, pics, authors, links = get_cover(url + str(i))
    for link in links:
        print(link)
        score, price, publishtime, publisher, page, isbm = get_details(link)
    for i in range(len(names)):
        book = {"title": names[i],
                "cover_url": pics[i],
                "authors": authors[i],
                "link": links[i],
                "score": scores[i],
                "price": prices[i],
                "publish_time": publishtimes[i],
                "publishers": publishers[i],
                "pages": pages[i],
                "ISBM": isbms[i]
                }
        data_path = f'{book["title"]}.json'
        json.dump(book, open(data_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/863.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[SpringBoot] YAML基础语法

✨✨个人主页:沫洺的主页 📚📚系列专栏: 📖 JavaWeb专栏📖 JavaSE专栏 📖 Java基础专栏📖vue3专栏 📖MyBatis专栏📖Spring专栏📖SpringMVC专栏📖SpringBoot专…

四线法与电桥

目录: 一、基本电桥电路 二、开尔文四线检测 三、惠斯通与开尔文电桥 1、电阻桥定义解释 2、电阻桥相关计算 3、开尔文双电桥 4、电阻桥的应用 --------------------------------------------------------------------------------------------------------…

java中的垃圾回收算法与垃圾回收器

🚀 优质资源分享 🚀 学习路线指引(点击解锁)知识定位人群定位🧡 Python实战微信订餐小程序 🧡进阶级本课程是python flask微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一…

Swift学习笔记笔记(五) Swift扩展协议类

一、 实验目的: 1.掌握Swift扩展型 2.掌握Swift协议 3.掌握Swift类 二、实验原理: 1.Swift扩展的定义 2.Swift协议的定义 3.Swift类的定义 三、实验步骤及内容: 1.方法 //实例方法 class Website { var visitCount 0 func visiting(){…

【LC】二叉树应用强化OJ

✨博客主页: 心荣~ ✨系列专栏:【LeetCode/牛客刷题】 ✨一句短话: 难在坚持,贵在坚持,成在坚持! 文章目录1. 检查两颗树是否相同2. 另一颗树的子树3. 二叉树最大深度4. 判断—颗二叉树是否是平衡二叉树5. 对称二叉树6. 二叉树的构建及遍历7. 二叉树的分层遍历8. 给定一个二叉树…

JAVAweb第一次总结作业

1.什么是html HTML的全称为超文本标记语言(Hyper Text Markup Language),是一种标记语言。它包括一系列标签,通过这些标签可以将网络上的文档格式统一,使分散的Internet资源连接为一个逻辑整体。 HTML文本是由HTML命令组成的描述性文本&…

【Python】import模块的多种操作

前言 记录一下关于Python在导入模块时候一些操作~ 知识点📖📖 Python魔法方法:__all__ Python内置模块:importlib 实现 指定导出的变量 当你在使用 from xxx import * 时候,可以通过 __all__ 来指定可被导出的变…

每天五分钟机器学习:通过学习曲线判断模型是过拟合还是欠拟合

本文重点 本节课程我们学习使用学习曲线来判断某一个学习算法是否处于偏差、方差问题。学习曲线其实就是训练误差和验证误差关于样本m的曲线,我们将通过学习曲线来判断该算法是处于高偏差问题,还是处于高方差问题。 高偏差问题(欠拟合) 注意:这个m表示训练集数据样本…

王二涛研究组揭示丛枝菌根共生与根瘤共生的协同进化机制

2021年,中国科学院分子植物科学卓越创新中心王二涛团队在《Molecular Plant》发表了“Mycorrhizal Symbiosis Modulates the Rhizosphere Microbiota to Promote Rhizobia Legume Symbiosis”研究论文,该研究通过定量微生物组、微生物共发生网络及微生物…

mac for m1(arm):安装redis的四种方式(本机安装、homebrew安装、虚拟机安装、docker安装)

0. 引言 redis作为当今最常用的非关系型数据库,被广泛应用于数据缓存场景。而mac m1采用arm芯片,使得众多软件安装成为问题,今天我们来看mac m1如何安装redis 1.本机安装redis 1、下载redis安装包:https://redis.io/download/ …

subplots()--matplotlib

1. 函数功能 成一个画布和若干子区。2. 函数语法 matplotlib.pyplot.subplots(nrows1, ncols1, *, sharexFalse, shareyFalse, squeezeTrue, subplot_kwNone, gridspec_kwNone, **fig_kw)3. 函数参数与示例 参数含义nrows, ncols画布被分成的行、列数squeeze布尔值&#xf…

【畅购商城】用户登录

用户登录 构建页面&#xff1a;Login.vue步骤一&#xff1a;创建Login.vue步骤二&#xff1a;绘制通用模块<template> <div> <TopNav></TopNav> <div style"clear:both;"></div> <HeaderLogo></HeaderLogo> <div…

嵌入式开发--CubeMX使用入门教程

嵌入式开发–CubeMX使用入门教程 CubeMX简介 传统的单片机开发时&#xff0c;需要针对片上外设做各种初始化的工作&#xff0c;相当麻烦。 CubeMX是ST公司出品的一款图形化代码生成工具&#xff0c;通过图形化界面&#xff0c;可以非常直观的配置好各种片上外设&#xff0c;时…

一个方便IO单元测试的C#扩展库

对于我们.Net程序员&#xff0c;System.Web.Abstractions我们都非常熟悉&#xff0c;主要作用于Web可以实现单元测试&#xff0c;他是在.Net framework 3.5 sp1开始引入的,很好的解决项目表示层不好做单元测试的问题&#xff0c;这个库所有类都是Wrapper/Decorator模式的。今天…

[SpringBoot] Spring Boot注册Web原生组件/拦截器HandlerInterceptor

✨✨个人主页:沫洺的主页 &#x1f4da;&#x1f4da;系列专栏: &#x1f4d6; JavaWeb专栏&#x1f4d6; JavaSE专栏 &#x1f4d6; Java基础专栏&#x1f4d6;vue3专栏 &#x1f4d6;MyBatis专栏&#x1f4d6;Spring专栏&#x1f4d6;SpringMVC专栏&#x1f4d6;SpringBoot专…

风控建模坏样本太少,不要再用过采样和欠采样了,试下这种更有效的方法

样本数据不平衡是我们建模场景中经常遇到的问题&#xff0c;由于目标类别的分布占比差异较大&#xff0c;使得模型训练难以取得较好的拟合效果&#xff0c;甚至模型结果在实际应用中无效。举个最常见的例子&#xff0c;在信贷场景中构建反欺诈模型时&#xff0c;训练样本数据的…

(附源码)计算机毕业设计SSM垃圾分类综合服务系统

&#xff08;附源码&#xff09;计算机毕业设计SSM垃圾分类综合服务系统 项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术…

(27)语义分割--cityscape数据集的读取和使用

1、主要参考 (1) 图像分割cityscape数据集使用介绍 - 知乎 (2)torchvision支持很多现成的数据集 Datasets — Torchvision 0.13 documentation 。。。。。。。。。。。。。。。。。 。。。。。。。。。。。。。。。。 。。。。。。。。。。。。。。。。。。。 2、下载…

CTFHub | 整数型注入

0x00 前言 CTFHub 专注网络安全、信息安全、白帽子技术的在线学习&#xff0c;实训平台。提供优质的赛事及学习服务&#xff0c;拥有完善的题目环境及配套 writeup &#xff0c;降低 CTF 学习入门门槛&#xff0c;快速帮助选手成长&#xff0c;跟随主流比赛潮流。 0x01 题目描述…

【Vue 快速入门系列】列表的基本使用

文章目录前言列表的基本使用Key的原理列表过滤列表排序前言 本篇文章讲述Vue中最基本的列表使用&#xff0c;如何迭代列表取值&#xff0c;如何对列表进行过滤、排序等。 列表的基本使用 在Vue中使用列表的时候灰常简单&#xff0c;只需要将Vue属性内的列表数据与dom标签进行…