Linux6.36 Kubernetes Pod进阶

news2024/9/24 12:52:55

文章目录

  • 计算机系统
    • 5G云计算
      • 第三章 LINUX Kubernetes Pod进阶
        • 一、资源限制
          • 1.CPU 资源单位
          • 2.内存 资源单位
          • 3.重启策略(restartPolicy)
          • 4.健康检查:又称为探针(Probe)
          • 5.启动、退出动作

计算机系统

5G云计算

第三章 LINUX Kubernetes Pod进阶

一、资源限制

当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。

当为 Pod 中的容器指定了 request 资源时,代表容器运行所需的最小资源量,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配

官网示例:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

//Pod 和 容器 的资源请求和限制:
spec.containers[].resources.requests.cpu		//定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory		//定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu			//定义 cpu 的资源上限 
spec.containers[].resources.limits.memory		//定义内存的资源上限
1.CPU 资源单位

PU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒
Kubernetes 不允许设置精度小于 1m 的 CPU 资源

2.内存 资源单位

内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示
如:1KB=103=1000,1MB=106=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=210=1024,1MiB=220=1048576=1024KiB

PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些

示例1:
vim pod1.yaml
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app1
    image: nginx
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: app2
    image: nginx
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"


此例子中的 Pod 有两个容器。每个容器的 request 值为 0.25 cpu 和 64MiB 内存,每个容器的 limit 值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存,总的资源 limit 为 1 cpu 和 256MiB 内存。


示例2:
vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "abc123"
    resources:
      requests:
        memory: "512Mi"
        cpu: "0.5"
      limits:
        memory: "1Gi"
        cpu: "1"




kubectl apply -f pod2.yaml
kubectl describe pod frontend

kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE
frontend   2/2     Running   0          14s

kubectl describe nodes node02				#由于当前虚拟机有2个CPU,所以Pod的CPU Limits一共占用了50%
  Namespace                   Name                     CPU Requests  CPU Limits   Memory Requests  Memory Limits  AGE
  ---------                   ----                     ------------  ----------   ---------------  -------------  ---
  default                     frontend                 750m (37%)    1500m (75%)  576Mi (30%)      1152Mi (61%)   52s
  kube-flannel                kube-flannel-ds-rnnm9    100m (5%)     0 (0%)       50Mi (2%)        0 (0%)         6d5h
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource           Requests     Limits
  --------           --------     ------
  cpu                850m (42%)   1500m (75%)
  memory             626Mi (33%)  1152Mi (61%)
  ephemeral-storage  0 (0%)       0 (0%)
  hugepages-1Gi      0 (0%)       0 (0%)
  hugepages-2Mi      0 (0%)       0 (0%)
Events:              <none>

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.重启策略(restartPolicy)

当 Pod 中的容器退出时通过节点上的 kubelet 重启容器。适用于 Pod 中的所有容器

容器重启策略说明
Always当Pod中的容器退出时,总是重启容器,无论容器退出状态码如何。是默认的容器重启策略
OnFailure当Pod中的容器异常退出时(容器退出状态码为非0),才会重启容器;正常退出的容器(容器退出状态码为0)不会重启
Never当Pod中的容器退出时,总是不重启容器,无论容器退出状态码如何

注意:K8S 中不支持重启 Pod 资源,只有删除重建
在用 yaml 方式创建 Deployment 和 StatefulSet 类型时,restartPolicy 只能是 Always,kubectl run 创建 Pod 可以选择 Always,OnFailure,Never 三种策略

kubectl edit deployment nginx-deployment
......
  restartPolicy: Always
//示例
vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: foo
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 30; exit 3


kubectl apply -f pod3.yaml

//查看Pod状态,等容器启动后30秒后执行exit退出进程进入error状态,就会重启次数加1
kubectl get pods
NAME                              READY   STATUS             RESTARTS   AGE
foo                               1/1     Running            1          50s


kubectl delete -f pod3.yaml

vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: foo
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 30; exit 3
  restartPolicy: Never
#注意:跟container同一个级别

kubectl apply -f pod3.yaml

//容器进入error状态不会进行重启
kubectl get pods -w

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.健康检查:又称为探针(Probe)

探针是由kubelet对容器执行的定期诊断

探针的三种规则说明
livenessProbe判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success
readinessProbe判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service endpoints 中剔除删除该Pod的IP地址。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success
startupProbe(这个1.17版本增加的)判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success

:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的

Probe支持三种检查方法说明
exec在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功
tcpSocket对指定端口上的容器的IP地址进行TCP检查(三次握手)
如果端口打开,则诊断被认为是成功的
httpGet对指定的端口和uri路径上的容器的IP地址执行HTTPGet请求
如果响应的状态码大于等于200且小于400,则诊断被认为是成功的
每次探测都将获得以下三种结果之一说明
成功(Success)表示容器通过了检测
失败(Failure)表示容器未通过检测
未知(Unknown)表示检测没有正常进行
官网示例:
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

//示例1:exec方式
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/busybox
    args:
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      failureThreshold: 1
      initialDelaySeconds: 5
      periodSeconds: 5
spec.containers.livenessProbe下的参数说明
initialDelaySeconds指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0
periodSeconds指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1
failureThreshold当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1
timeoutSeconds探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)

可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它

vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3
	  
kubectl apply -f exec.yaml

kubectl describe pods liveness-exec
Events:
  Type     Reason     Age               From               Message
  ----     ------     ----              ----               -------
  Normal   Scheduled  27s               default-scheduler  Successfully assigned default/liveness-exec to 192.168.58.62
  Normal   Pulled     27s               kubelet            Container image "busybox" already present on machine
  Normal   Created    27s               kubelet            Created container liveness-exec-container
  Normal   Started    27s               kubelet            Started container liveness-exec-container
  Warning  Unhealthy  8s (x3 over 14s)  kubelet            Liveness probe failed:
  Normal   Killing    8s                kubelet            Container liveness-exec-container failed liveness probe, will be restarted

kubectl get pods -w
NAME            READY   STATUS    RESTARTS   AGE
liveness-exec   1/1     Running   0          50s
liveness-exec   1/1     Running   1          51s

//示例2:httpGet方式
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。

任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。

vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-httpget
  namespace: default
spec:
  containers:
  - name: liveness-httpget-container
    image: 
    imagePullPolicy: IfNotPresent
    ports: nginx
    - name: http
      containerPort: 80
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10
	  
kubectl apply -f httpget.yaml

kubectl exec -it liveness-httpget -- ls /usr/share/nginx/html/

kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods
NAME               READY   STATUS    RESTARTS   AGE
liveness-httpget   1/1     Running   1          51s


//示例3:tcpSocket方式
apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。

vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
  name: probe-tcp
spec:
  containers:
  - name: nginx
    image: soscscs/myapp:v1
    livenessProbe:
      initialDelaySeconds: 5
      timeoutSeconds: 1
      tcpSocket:
        port: 8080
      periodSeconds: 10
      failureThreshold: 2

kubectl apply -f tcpsocket.yaml

kubectl exec -it probe-tcp  -- netstat -natp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      1/nginx: master pro

kubectl get pods -w
NAME        READY   STATUS    RESTARTS   AGE
probe-tcp   1/1     Running   0          2s
probe-tcp   1/1     Running   1          20s       #第一次是 init(5秒) + period(10秒) * 2
probe-tcp   1/1     Running   2          40s       #第二次是 period(10秒) + period(10秒)  重试了两次
probe-tcp   1/1     Running   3          60s


//示例4:就绪检测
vim readiness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: readiness-httpget
  namespace: default
spec:
  containers:
  - name: readiness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index1.html
      initialDelaySeconds: 1
      periodSeconds: 3
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10

kubectl apply -f readiness-httpget.yaml

//readiness探测失败,无法进入READY状态
kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   0/1     Running   0          6s

kubectl exec -it readiness-httpget sh
 # cd /usr/share/nginx/html/
 # ls
50x.html    index.html
 # echo 123 > index1.html 
 # exit

kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          57s

kubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          95s
readiness-httpget   0/1     Running   1          98s


//示例5:就绪检测2
vim readiness-myapp.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp1
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp2
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp3
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Service
metadata:
  name: myapp
spec:
  selector:
    app: myapp
  type: ClusterIP
  ports:
  - name: http
    port: 80
    targetPort: 80

kubectl apply -f readiness-myapp.yaml

kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE   READINESS GATES
pod/myapp1   1/1     Running   0          33s   10.244.0.39   192.168.58.62   <none>           <none>
pod/myapp2   1/1     Running   0          33s   10.244.1.24   192.168.58.63   <none>           <none>
pod/myapp3   1/1     Running   0          33s   10.244.0.40   192.168.58.62   <none>           <none>

NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE    SELECTOR
service/kubernetes   ClusterIP   10.0.0.1     <none>        443/TCP   2d3h   <none>
service/myapp        ClusterIP   10.0.0.88    <none>        80/TCP    33s    app=myapp

NAME                   ENDPOINTS                                      AGE
endpoints/kubernetes   192.168.58.60:6443,192.168.58.61:6443          2d3h
endpoints/myapp        10.244.0.39:80,10.244.0.40:80,10.244.1.24:80   33s

kubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html

//readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址
kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE   READINESS GATES
pod/myapp1   0/1     Running   0          63s   10.244.0.39   192.168.58.62   <none>           <none>
pod/myapp2   1/1     Running   0          63s   10.244.1.24   192.168.58.63   <none>           <none>
pod/myapp3   1/1     Running   0          63s   10.244.0.40   192.168.58.62   <none>           <none>

NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE    SELECTOR
service/kubernetes   ClusterIP   10.0.0.1     <none>        443/TCP   2d3h   <none>
service/myapp        ClusterIP   10.0.0.88    <none>        80/TCP    63s    app=myapp

NAME                   ENDPOINTS                               AGE
endpoints/kubernetes   192.168.58.60:6443,192.168.58.61:6443   2d3h
endpoints/myapp        10.244.0.40:80,10.244.1.24:80           63s

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.启动、退出动作
vim post.yaml
apiVersion: v1
kind: Pod
metadata:
  name: lifecycle-demo
spec:
  containers:
  - name: lifecycle-demo-container
    image: soscscs/myapp:v1
    lifecycle:   #此为关键字段
      postStart:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"]      
      preStop:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  initContainers:
  - name: init-myservice
    image: soscscs/myapp:v1
    command: ["/bin/sh", "-c", "echo 'Hello initContainers'   >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  volumes:
  - name: message-log
    hostPath:
      path: /data/volumes/nginx/log/
      type: DirectoryOrCreate

kubectl apply -f post.yaml

kubectl get pods -o wide
NAME             READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE   READINESS GATES
lifecycle-demo   1/1     Running   0          3s    10.244.0.41   192.168.58.62   <none>           <none>

kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message
Hello initContainers
Hello from the postStart handler

//在 node01 节点上查看
[root@node01 ~]# cd /data/volumes/nginx/log/
[root@node01 /data/volumes/nginx/log]# ls
access.log  error.log  message
[root@node01 /data/volumes/nginx/log]# cat message 
Hello initContainers
Hello from the postStart handler
#由上可知,init Container先执行,然后当一个主容器启动后,Kubernetes 将立即发送 postStart 事件

//删除 pod 后,再在 node01 节点上查看
kubectl delete pod lifecycle-demo

[root@node01 /data/volumes/nginx/log]# cat message 
Hello initContainers
Hello from the postStart handler
Hello from the poststop handler
#由上可知,当在容器被终结之前, Kubernetes 将发送一个 preStop 事件

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/854514.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WMS系列:层级树的surface 的创建

WMS 创建的surface 与 surfaceflinger 创建的Layer 是一一对应的&#xff0c;只不过可能是创建不同的 Layer 1. DefaultTaskDisplayArea 对应的surface 的创建 DefaultTaskDisplayArea 的调用栈如下&#xff0c;是在系统进程启动服务的时候&#xff0c;去创建对应的SurfaceCont…

研发提测前测试到底能做些什么

目录 需求分析 研发设计分析 测试用例编写 接口文档测试 内部业务逻辑 数据库测试 jimdb测试 异常流程测试 总结 作为测试&#xff0c;经常会遇到倒排期的项目&#xff0c;当研发已经占用了很多资源的情况下&#xff0c;此时测试要想提高效率。就不得不在研发提测前多做…

【腾讯云 Cloud Studio 实战训练营】使用Cloud Studio构建SpringSecurity权限框架

1.Cloud Studio&#xff08;云端 IDE&#xff09;简介 Cloud Studio 是基于浏览器的集成式开发环境&#xff08;IDE&#xff09;&#xff0c;为开发者提供了一个永不间断的云端工作站。用户在使用 Cloud Studio 时无需安装&#xff0c;随时随地打开浏览器就能在线编程。 Clou…

Towards Open World Object Detection【论文解析】

Towards Open World Object Detection 摘要1 介绍2 相关研究3 开放世界目标检测4 ORE:开放世界目标检测器4.1 对比聚类4.2 RPN自动标注未知类别4.3 基于能量的未知标识4.4 减少遗忘 5 实验5.1开放世界评估协议5.2 实现细节5.3 开放世界目标检测结果5.4 增量目标检测结果 6 讨论…

1999-2021年全国各地级市专利申请与获得情况、绿色专利申请与获得情况面板数据

1999-2021年全国各地级市专利申请与获得情况、绿色专利申请与获得情况面板数据 1、时间&#xff1a;2000-2021年 2、来源&#xff1a;国家知识产权局 3、范围&#xff1a;地级市&#xff08;具体每年地级市数量参看下文图片&#xff09; 4、指标&#xff1a;申请专利数&…

吐血整理,Python接口自动化测试-接口关联依赖处理(详细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 场景说明 在面试…

【TypeScript】类型断言-类型的声明和转换(五)

【TypeScript】类型断言-类型的声明和转换&#xff08;五&#xff09; 【TypeScript】类型断言-类型的声明和转换&#xff08;五&#xff09;一、简介二、断言形式2.1 尖括号语法2.2 as形式 三、断言类型3.1 非空断言3.2 肯定断言-肯定化保证赋值3.3 将任何类型断言为any3.4 调…

【STL】优先级队列反向迭代器详解

目录 一&#xff0c;栈_刷题必备 二&#xff0c;stack实现 1.什么是容器适配器 2.STL标准库中stack和queue的底层结构 了解补充&#xff1a;容器——deque 1. deque的缺陷 2. 为什么选择deque作为stack和queue的底层默认容器 三&#xff0c;queue实现 1. 普通queue …

RobotFramework之接口自动化流程测试

Robot Framework之接口测试自动化&#xff08;数据准备、数据脚本实现、实现层和断言层、测试报告&#xff09; 脚本用例通用模板设计 单接口用例测试 数据准备&#xff0c;已经取出了该接口的所有正向和逆向接口测试用例&#xff0c;那现在如何把数据和用例结合起来&#xff0…

fastadmin 自定义弹窗大小,遮罩关闭弹窗问题

// 更改表格里面的默认编辑按钮弹窗table.on(post-body.bs.table,function(){// 这里就是数据渲染结束后的回调函数$(".btn-editone,.btn-add").data("area", [80%,90%]);$(".btn-editone,.btn-add").data("shade", [0.6,"#000&q…

测试经理应该怎么写测试部门年终总结报告?

年终总结一般对季度、半年度或年度总结的一个整理&#xff0c;我们需要定期对工作中的内容进行定期总结和复盘。将每一次复盘中总结出来的一些收获叠加起来&#xff0c;在针对性地调整一下&#xff0c;就是一份合格的年终总结。具体可以分为如下几个步骤&#xff1a; 1.先把这…

【第一阶段】kotlin语言的Nothing类型

fun main() {show(60) } //两种写法一样 private fun show(num:Int){when(num){//下面这句话不是注释提示&#xff0c;会终止程序-1->TODO("不符合")in 0..59->println("不及格")in 60..89->println("及格")in 90..100->println(&qu…

Zookeeper特性与节点数据类型详解

CAP&Base理论 CAP理论 cap理论是指对于一个分布式计算系统来说&#xff0c;不可能满足以下三点: 一致性 &#xff1a; 在分布式环境中&#xff0c;一致性是指数据在多个副本之间是否能够保持一致的 特性&#xff0c;等同于所有节点访问同一份最新的数据副本。在一致性的需…

PPT颜色又丑又乱怎么办?

一、设计一套PPT时&#xff0c;可以从这5个方面进行设计 二、PPT颜色 &#xff08;一&#xff09;、PPT常用颜色分类 一个ppt需要主色、辅助色、字体色、背景色即可。 &#xff08;二&#xff09;、搭建PPT色彩系统 设计ppt时&#xff0c;根据如下几个步骤&#xff0c;依次选…

时间复杂度空间复杂度相关练习题

1.消失的数字 【题目】&#xff1a;题目链接 思路1&#xff1a;排序——》qsort快排——》时间复杂度O&#xff08;n*log2n&#xff09; 不符合要求 思路2&#xff1a;&#xff08;0123...n)-(a[0]a[1][2]...a[n-2]) ——》 时间复杂度O&#xff08;N&#xff09;空间复杂度…

Leetcode-每日一题【剑指 Offer 15. 二进制中1的个数】

题目 编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中数字位数为 1 的个数&#xff08;也被称为 汉明重量).&#xff09;。 提示&#xff1a; 请注意&#xff0c;在某些语言&#xff08;如 Java&…

计算机网络 ARP协议 IP地址简述

ARP只能在一个链路或一段网络上使用

气体检测仪语音报警芯片,可自行烧录的音频芯片,WT588F02B-8S

近年来&#xff0c;安全问题备受关注&#xff0c;特别是涉及气体泄漏的危险场景。 为了进一步增强气体检测仪的安全功能&#xff0c;市面上便研发出了一款有害气体报警器&#xff0c;并采用WT588F02B-8S语音提示芯片为元器件&#xff0c;为产品赋予更多声音&#xff0c;更多警示…

嵌入式开发学习(STC51-2-创建工程模板)

创建工程模板&#xff08;以多文件模板为例&#xff09; 打开keil&#xff0c;创建新工程 选择文件目录&#xff0c;起名 选择芯片类型 &#xff08;没有找到对应芯片类型的可以网上搜索&#xff1a;keil配置stc系列器件支持包&#xff0c;配置好后就可以了&#xff09; 创…

泰国的区块链和NFT市场调研

泰国的区块链和NFT市场调研 基本介绍 参考&#xff1a; https://zh.wikipedia.org/zh-hans/%E6%B3%B0%E5%9B%BD参考&#xff1a; https://hktdc.infogram.com/thsc–1h7k2303zo75v2x zz制度&#xff1a; 君主立宪制&#xff08;议会制&#xff09; 国王&#xff1a; 玛哈哇集拉…