机器学习笔记:李宏毅ChatGPT Finetune VS Prompt

news2024/12/23 13:03:15

1 两种大语言模型:GPT VS BERT

 2 对于大语言模型的两种不同期待

2.1 “专才”

2.1.1 成为专才的好处 

Is ChatGPT A Good Translator? A Preliminary Study 2023 Arxiv
箭头方向指的是从哪个方向往哪个方向翻译
 
表格里面的数值越大表示翻译的越好
 
可以发现专门做翻译的工作会比ChatGPT好一些
How Good Are GPT Models at  Machine Translation? A  Comprehensive Evaluation
同样地,专项翻译任务上,ChatGPT不如一些专门做翻译的模型

 2.1.2 使用方式

对于训练模型进行改造

 bert的先天劣势就是,他是句子填空,而不是句子接龙,所以希望他进行某一项任务,需要对他进行额外的处理,以及额外的参数微调(finetune)

2.1.2.1 加head

额外地对BERT进行一定的添加,使其能够输出希望的结果

 2.1.2.2 微调 Finetune

 2.1.2.3 对训练模型做改造——加入Adapter

在语言模型里插入额外的模组,语言模型的参数不动,只更新adapter的参数
 

 2.1.2.3.1 为什么需要Adapter?

如果没有Adapter的话,100个任务就需要存放100个大模型(的参数)

 有了Adapter之后,同样的100个任务,我们只需要存一个大模型的参数,和100个任务对应Adapter的参数即可。而一般Adapter的参数量比大模型少多了

 

2.2 “通才”

 通过人类给模型下的指令(prompt)实现,

2.2.1 成为通才的好处

 2.2.2 In-context Learning

给大语言模型一个句子,让他分析句子是正面的还是负面的

 

我们需要告诉模型我们要进行情感分析。怎么告诉呢?

  • 我们给大模型一些例子,(前面那些句子+情感分析结果)
  • 把那些例子串起来,加上我们想要分析的句子,一股脑喂给大模型,让大模型输出是正面还是负面

 2.2.2.1  大模型真的能从这些例子中学到信息?

2.2.2.1.1 Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? 2022 ARXIV

故意给模型输入一些错误的情感分析标注,看模型的分析结果
 
  •  No demo是没有范例
  • 橙色是给了正确的范例
  • 红色是给了一些错误的范例

——>可以发现正确率并没有下降很多

并没有从范例里学到很多有用的信息? 

 

 

那么,故意给一些不在这个domain里面的,无关的输入呢?

 这种将无关domain的信息加入的结果就是紫色部分,可以看到如果是来自不同的domain的话,效果会下降

  

 

所以这篇论文中,in-context learning作用的猜测是:“唤醒”模型

 换句话说,大语言模型本身就会情感分析,in-context learning的作用是“唤醒”他,让语言模型知道接下来做的任务是情感分析

 这篇论文的另一个例子也佐证了这个观点,我们提供的句子-情感结果对增加,精度涨的不多(如果是finetune的话,精度会提升的很快)

 

 

——>说明并不是靠in-context learning提供的这几个输入来学习情感分析。大语言模型本身就已经具备了情感分析的功能了

 2.2.2.1.2 Larger language models do in-context learning differently 2023 arxiv

  •  每一个图像中,颜色越深的表示模型越大
  • 横轴表示in-context learning阶段提供给大模型的有多少比例的是错误的信息
  • 可以看到大模型受到错误范例的影响是很大的,而小模型(GPT3,这里的小是相对的小)受到错误范例的影响是不大
    • 上一篇paper考虑的是较小的模型,所以可能会觉得给了错误的范例影响不大
  • 同时我们可以看到,在大模型中,当in-context learning的错误率为100%(全是相反的结果)的时候,大模型的正确率都是低于50%的,说明他们确实从错误的资料中学到了一些知识

与此同时,我们直接让大模型进行分类任务

我们在in-context learning阶段将input和output全部作为输入提供给大模型,让大模型来进行分类任务

  

可以看到大模型确实学到了in-context learning中的信息

 

2.2.2.2 让模型学习 in-context learning

[2110.15943] MetaICL: Learning to Learn In Context (arxiv.org) 

前面的in-context learning都是没有finetune过程了,这里相当于finetune了一下 

 用别的任务的in-context learning的范例、输入、输出进行微调

 2.2.3 instruction tuninging 

大语言模型还是需要进行一定的微调,才能效果比较好,这个微调的过程就是instruction-tuning

训练(finetune)的时候, 给模型一些指令和对应的答案。测试的时候,给finetune指令之外的其他指令。让模型自己给出合理的回应。

早期模型如Multitask Prompted Training Enables Zero-Shot Task Generalization就提出了一个T0模型,来达成instruction-tuning的效果

 

 [2109.01652] Finetuned Language Models Are Zero-Shot Learners (arxiv.org)

FLAN也是一个早期做instruction tuning的work

 

首先收集大量的NLP任务和数据集

 

而由于instruction tuning是希望模型理解人类下的指令,所以FLAN每一个NLP的任务想了十种不同的描述方式(template)

  

  • 当测试任务是natrual language inference的时候,finetune训练的时候就没有这个任务
  • zero shot 是只有指令,没有in-context learning
  • few-shot就是in-context learning
  • FLAN就是进行instruction learning的结果

 

 2.2.4 Chain of Thought

[2201.11903] Chain-of-Thought Prompting Elicits Reasoning in Large Language Models (arxiv.org)

另一种更详细地给机器prompting的方法

  • 如果是数学这种需要推理的问题,直接给 in-context learning 往往效果若不好

  •  而如果我们给范例的时候,同时给推导过程+答案。期望模型输出答案的时候,也先输出推导,再输出答案
    • 这就叫Chain of Thought Prompting

 

  •  从效果上来看,加了CoT之后的效果更好

 2.2.5 加一些prompting,让CoT效果更好

[2205.11916] Large Language Models are Zero-Shot Reasoners (arxiv.org)

在进行CoT的时候,范例输完了,需要模型回答的问题说完了,加一行’Let's think step by step',可以获得更好的效果

Large Language Models Are Human-Level Prompt Engineers ICLR 2023

加的那一行文字不一样,效果也不一样

2.2.6 CoT+Self=consistency

[2203.11171] Self-Consistency Improves Chain of Thought Reasoning in Language Models (arxiv.org)

 

  • 使用CoT让模型先输出推导过程,再输出推导结果,可能每次推导过程不一样 答案也不一样
    • 这里让语言模型产生好几次推导和对应的结果,出现最多次的答案就是正确答案
    • 当然也可以每个答案 用语言模型算一个几率(信心分数)权重
      • 但这个权重论文中说没有什么帮助,所以直接根据数量投票就好

2.2.7 强化学习找Prompt

[2206.03931] Learning to Generate Prompts for Dialogue Generation through Reinforcement Learning (arxiv.org)

2.2.8 直接用LLM来找Prompt

[2211.01910] Large Language Models Are Human-Level Prompt Engineers (arxiv.org)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/850905.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue3 table动态合并,自定义参数合并单元格

<template><div><el-table :data"tableData" :span-method"objectSpanMethod" border:header-cell-style"{ textAlign: center}"><el-table-column prop"area" label"区域" align"center"&g…

如何在页面中嵌入音频和视频?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 嵌入音频⭐ 嵌入视频⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏…

《合成孔径雷达成像算法与实现》Figure3.2

代码参数说明&#xff1a;Sf1为书中公式3.19&#xff0c;Sf2为时域信号快速傅里叶表达式&#xff0c;两种频谱表达式所做出的图可看出其区别 代码如下&#xff1a; clc clear all close all%参数设置 TBP 720; %时间带宽积 T 10e-6; %脉冲持续时间%参数计…

20.5 HTML 媒体

1. video视频标签 video视频标签: 是HTML中用于在网页上嵌入视频的元素.常用的视频标签属性: - src属性: 指定视频文件的URL地址. - controls属性: 用于显示视频播放控件(如播放按钮, 进度条等), 使用户能够控制视频的播放. - width和height: 指定视频的宽度和高度. - autopla…

ESP32 Max30102 (3)修复心率误差

1. 运行效果 2. 新建修复心率误差.py 代码如下: from machine import sleep, SoftI2C, Pin, Timer from utime import ticks_diff, ticks_us from max30102 import MAX30102, MAX30105_PULSE_AMP_MEDIUM from hrcalc import calc_hr_and_spo2BEATS = 0 # 存储心率 FINGER_F…

MATLAB详细安装教程(亲测有效!!)

1.复制以下链接&#xff0c;用百度网盘打开&#xff0c;下载 链接&#xff1a;https://pan.baidu.com/s/19AwQeCRYofGAV8sfDIm5PQ 提取码&#xff1a;mads 我是下载到D盘自己创建的文件中 2.下载完毕后打开此文件夹&#xff0c;点击最后一项 3.点击右上角高级选项&#xff0…

ESP32 Max30102 (2)检测 血氧、温度

1. 运行效果 thonny终端打印的信息如下 注意: 上述的心率值是有很大的误差的,会在下一节课解决这个问题2. 新模块hrcalc.py 在Micorpython端,新建文件hrcalc.py,内容如下 这个文件的作用,可以计算出 【血氧值】 # -*-coding:utf-8# 25 samples

基于身份的安全威胁正在迅速增长

根据端点安全和威胁情报供应商 CrowdStrike 发布的一份报告&#xff0c;目前最危险的网络安全威胁是能够访问给定系统合法身份信息的攻击者。 根据该报告&#xff0c;交互式入侵&#xff08;该公司将其定义为攻击者积极工作以在受害者系统上实现某种非法目的的入侵&#xff09;…

做接口测试如何上次文件

在日常工作中&#xff0c;经常有上传文件功能的测试场景&#xff0c;因此&#xff0c;本文介绍两种主流编写上传文件接口测试脚本的方法。 首先&#xff0c;要知道文件上传的一般原理&#xff1a;客户端根据文件路径读取文件内容&#xff0c;将文件内容转换成二进制文件流的格式…

FOHEART H1数据手套:连接虚拟与现实,塑造智能交互新未来

在全新交互时代背景中&#xff0c;数据手套无疑是一种重要的科技产物。它不仅彻底改变了我们与虚拟世界的互动方式&#xff0c;更为我们提供了一种全新、更为直观的交互形式。 FOHEART H1数据手套结合了虚拟现实、手势识别等高新技术&#xff0c;用先进的传感技术和精准的数据…

DDR4信号仿完整性仿真

在硬件电路设计中&#xff0c;DDR一直是电路设计中的难点。目前正在进行DDR4的电路设计&#xff0c;将基本的仿真设计过程进行一下记录。 主流的仿真工具都是支持DDR4的仿真的&#xff0c;目前使用的主力工具为Sigrity及Hyperlynx&#xff0c;下面以Sigrity系统软件为例说明一…

微服务01-SpringCloud

1、简介 SpringCloud集成了各种微服务功能组件&#xff0c;并基于SpringBoot实现了这些组件的自动装配&#xff0c;从而提供了良好的开箱即用体验。 其中常见的组件包括&#xff1a; 2、服务拆分和远程调用 2.1 服务拆分 这里总结了微服务拆分时的几个原则&#xff1a; …

干货 | 详述 Elasticsearch 向量检索发展史

1. 引言 向量检索已经成为现代搜索和推荐系统的核心组件。 通过将复杂的对象&#xff08;例如文本、图像或声音&#xff09;转换为数值向量&#xff0c;并在多维空间中进行相似性搜索&#xff0c;它能够实现高效的查询匹配和推荐。 图片来自&#xff1a;向量数据库技术鉴赏【上…

企业文件传输软件安全性分析与对比

随着科技的日新月异和应用领域的日益广泛&#xff0c;文件传输软件在人们生活和工作中发挥的作用越来越重大&#xff0c;因此出现了许多不同种类的文件传输软件。但是&#xff0c;随着网络安全问题的严峻&#xff0c;如何确保文件传输软件的安全性成为了一个亟待解决的问题。所…

编写简单的.gitlab-ci.yml打包部署项目

服务器说明&#xff1a; 192.168.192.120&#xff1a;项目服务器 192.168.192.121&#xff1a;GitLab 为了可以使用gitlab的cicd功能&#xff0c;我们需要先安装GitLab Runner 安装GitLab Runner参考&#xff1a; GitLab实现CICD自动化部署_gitlab cidi_程序员xiaoQ的博客-CS…

深入浅出对话系统——闲聊对话系统进阶

引言 本文主要关注生成式闲聊对话系统的进阶技术。 基于Transformer的对话生成模型 本节主要介绍GPT系列文章&#xff0c;这是由OpenAI团队推出的&#xff0c;现在大火的ChatGPT也是它们推出的。 GPT : Improving Language Understanding by Generative Pre-Traini ng 在自…

图的宽度优先深度优先遍历

图常见的遍历方式有两种&#xff0c;一种是宽度优先遍历&#xff0c;一种是深度优先遍历。 宽度优先遍历 宽度优先遍历和之前介绍的二叉树的层级遍历类似&#xff0c;主要也是利用Queue来完成层级的遍历&#xff0c;除此之外&#xff0c;因为图中很可能有环&#xff0c;所以还…

教雅川学缠论07-中枢实战众泰汽车000980

本文实战众泰汽车 下面是2023年11月14-2023年8月8众泰汽车日K图 先画日K 接下来处理包含&#xff0c;就变成下面这个样子 下面在套上缠论的理论&#xff0c;未来股价的走势应该是红色椭圆形虚线里面的样子 好了&#xff0c;文章就到这里&#xff0c;如果众泰最终不是这个走势…

ch6_1 中断及外部设备操作

1. 直接定制表 1.1 移位指令 1.2 操作显存数据 1.3 描述内存单元的标号 1.4 数据的直接定址表 1.5 代码的直接定址表 2.  内中断 2.1 中断及其处理 2.2 编写中断处理程序 2.3 单步中断 2.4 int 指令引发的中断 2.5 BIos , DOS 中断处理 2.5.1 BIOS——基本输…

TOPIAM 社区版 1.0.0 发布,开源 IAM/IDaaS 企业身份管理平台

文章目录 产品概述系统架构功能列表管理端门户端 技术架构后续规划相关地址 ​Hi&#xff0c;亲爱的朋友们&#xff0c;今天是传统 24 节气中的立秋&#xff0c;秋天是禾谷成熟、收获的季节。经过长时间优化和迭代&#xff0c;TOPIAM 企业身份管控平台也迎来了当下的成长和收获…