0-1背包问题
问题描述:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
二维数组解法
动态规划五部曲:
- 确定dp数组以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
- 确定递推公式
可以有两个方向推出来dp[i][j]:
- 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
- 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
- dp数组如何初始化
首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。 - 确定遍历顺序
有两个遍历的维度:物品与背包重量,先遍历哪一个都可以
5.检查
function testWeightBagProblem (weight, value, size) {
// 定义 dp 数组
const len = weight.length,
dp = Array(len).fill().map(() => Array(size + 1).fill(0));
// 初始化
for(let j = weight[0]; j <= size; j++) {
dp[0][j] = value[0];
}
// weight 数组的长度len 就是物品个数
for(let i = 1; i < len; i++) { // 遍历物品
for(let j = 0; j <= size; j++) { // 遍历背包容量
if(j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
console.table(dp)
return dp[len - 1][size];
}
一维数组解法
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j]
- 在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
- 此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值。
- dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
- 二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。
倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!
所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。
要先遍历物品。因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。 - 检查
function testWeightBagProblem(wight, value, size) {
const len = wight.length,
dp = Array(size + 1).fill(0);
for(let i = 1; i <= len; i++) {
for(let j = size; j >= wight[i - 1]; j--) {
dp[j] = Math.max(dp[j], value[i - 1] + dp[j - wight[i - 1]]);
}
}
return dp[size];
}
416. 分割等和子集
本题要求集合里能否出现总和为 sum / 2 的子集。
- 套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
- 本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
- 如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。
- 如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
- 检查
var canPartition = function(nums) {
const sum = (nums.reduce((p, v) => p + v));
if (sum & 1) return false;
const dp = Array(sum / 2 + 1).fill(0);
for(let i = 0; i < nums.length; i++) {
for(let j = sum / 2; j >= nums[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
if (dp[j] === sum / 2) {
return true;
}
}
}
return dp[sum / 2] === sum / 2;
};