RFID 技术简介
射频识别技术(RFID,即,Radio Frequency Identification)是一种非接触自动识别技术,它利用无线通信的方式自动的从目标中读取信息。
典型的RFID射频识别系统包括标签和读写器两部分。
标签是一块集成了几个主要模块的芯片,通过这几个模块来与读写器通信,完成数据信息的交换。芯片中的存储模块是用来储存标签识别号码或其他数据,容量不大,通常为几十Kbits,芯片还有通信模块,在外部连接发射接收天线。根据不同行业的应用需要,可以把标签中的芯片设计成不同的形式以便使用。与之前的数据传输方式相比,RFID系统的优点是标签的数据被读取时设备不用接触,识别距离仅受到设备功率和噪声的限制,所以识别距离更长;可以识别正在运动的目标。在大多数的RFID系统中,读写器功能是通过发射的信号在一个范围内形成电磁场来实现的。所以读写器的工作频率的快慢,天线大小和发射信号的功率大小都可以影响读写器工作区域的大小。当标签检测到该区域的读写器信号时,就开始发送储存的信息和数据。读写器发送的信号通常为标签提供时钟信号及标签工作所需的足够能量,其中的时钟信号使数据进行同步,从而简化了系统的设计。读写器接收到标签上返回的数据后,进行解码并进行错误校验来决定数据的有效性,然后通过 RS232、RS485或无线方式将数据传送到计算机网络。简单的RFID产品就是一种非接触式的IC卡,复杂的RFID产品能和外部传感器连接,来测量和记录不同的参数,有的甚至可以和GPS系统连接来跟踪物体。
条形码、磁卡、IC卡和标签等识别技术都有各自的优缺点和适用的应用场景。
条形码成本最低,适用于大量需求且数据不必更改的场合,例如:商品的外包装等,但是条形码容易磨损,且数据量小。磁卡的价格也很便宜,但是也很容易磨损,数据量也小。IC卡的数据存储量很大,数据安全性好,但价格稍高。由于IC卡的触点暴露在外面,有可能因静电或人为原因损坏。射频标签最大的优点在于非接触,完成识别工作时不需要人工干预,实现自动化且不易损坏。RFID系统可识别高速运动物体并可同时识别多个标签,操作快捷方便。标签可用于油渍和灰尘污染等恶劣环境下。短距离的标签可以在恶劣环境中替代条形码,如:工厂流水线上跟踪物体。远距离产品多用于交通,可达几十米,如:铁路车号的自动识别,汽车自动收费(ETC)或车辆身份识别等。
RFID技术的分类方式一般是以下四种:
(1) 根据读写方式不同分类:可读写式、只读式。
(2) 根据供电方式不同分类:有源、无源。
(3) 根据工作模式不同分类:被动式和主动式。
(4) 根据工作频率不同分类:低频、中频、高频和微波。
RFID系统结构示意图
常见编码方式
一般的数字调制基带编码中,所谓基带传输是在信号传输的过程中直接传送数字信号的电脉冲,这是最简单不易出错的传输方式,一般在近距离的局域网通信中都会采用基带传输的方式,常用的基带传输编码方式及规则如下:
(1)不归零码(NRZ)编码:当有电脉冲时表示二进制数‘1’,没有电脉冲表示二进制数‘0’。
(2)曼切斯特(Manchester)码:又称裂相码、同步码、相位编码在半个周期的电信号为低电平变为高电平,也就是上升沿时表示二进制数‘1’,在半个周期时电信号为下降沿表示二进制数‘0’。由于曼彻斯特码在每个时钟位都必须有一次变化,因此,其编码的效率仅可达到50%左右,传输流的速率是原始数据流的两倍,要占用较宽的频带。曼彻斯特编码中,每一位的中间有一跳变,该跳变既可作为时钟信号,又可作为数据信号。因此,曼切斯特编码优点:发送曼彻斯特编码信号时无须另发同步信号。信号的恢复很简单,只要对信号的边缘进行异步提取即可。
(3)单极性归零码(Single Polarity RZ):在前半个周期的高电平表示二进制数‘1’,整个周期持续低电平表示二进制数‘0’。单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型,也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号。
(4)差动双相(DBP)编码:在半周期有任意上升沿或者下降沿表示二进制数‘0’,在周期内没有任意上升沿或下降沿表示二进制数‘1’。另外在每一个周期开始时,电平都要反向,这样更有利于接收方辨别时钟周期。还有在每个周期开始时,电平都需要反相。因此,对接收方来说,时钟信号比较好找到。
(5)米勒(Miller)编码:在半个周期有任意上升沿或者下降沿表示二进制数‘1’,在周期有任意上升沿或者下降沿表示二进制数‘0’,。如果有两个及以上的‘0’出现,那么在第二个‘0’的周期开始处产生电平反向,这样更易于接收方确定时钟周期。密勒编码在周期开始时产生电平突变,对接收器来说,重建位节拍容易。密勒编码在半个位周期内的任意边沿表示二进制‘1’,而经过下一个位周期中不变的电平表示二进制‘0’。
常见信道编码波形图
MATLAB 仿真及部分结果
其MATLAB源代码见RFID编码方式的仿真实现
RFID 各编码正确性验证
如 Manchester编码
① 双击“Manchesterdetection.slx“仿真文件;
② 设置仿真时长,并双击“scope“;
③ 在scope窗口,点击运行。
Manchester编码仿真波形图
第一行波形为输入 原始bit信号,第二行为经编码后的信号。
根据编码规则 可验证其正确性。
RFID 各编码传输错误率统计
如 Manchester编码
① 双击打开“Manchesterdetection.slx “仿真文件
设置仿真时长,例:200,时长设置的越大,样本更多,错误率统计更准确。
② 打开“Manchesterdetectionm.m “脚本文件。点击运行
③ matlab的commond窗口会打印出错误传输的bit数,以及错误率。