【深度学习】采用自动编码器生成新图像

news2024/12/28 3:39:09

一、说明

        你知道什么会很酷吗?如果我们不需要所有这些标记的数据来训练 我们的模型。我的意思是标记和分类数据需要太多的工作。 不幸的是,大多数现有模型从支持向量机到卷积神经网,没有它们,卷积神经网络就无法训练。无监督学习不需要标注。无监督学习从未标记推断函数 数据本身。最著名的无监督算法是K-Means,它具有 广泛用于将数据聚类到组中和 PCA,这是首选 降维解决方案。K-Means和PCA可能是最好的两个 曾经构思过的机器学习算法。让他们变得更好的是 他们的简单性。我的意思是,如果你抓住它们,你会说:“我为什么不这样做?

      

二、自动编码器。

        为了更好地理解自动编码器,我将提供一些代码以及解释。请注意,我们将使用 Pytorch 来构建和训练我们的模型。

import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.nn import functional as F

        自动编码器是简单的神经网络,它们的输出就是它们的输入。简单 就这样。他们的目标是学习如何重建输入数据。但是怎么样 有益的?诀窍在于它们的结构。网络的第一部分是我们 称为编码器。它接收输入并将其编码为潜在 较低维度的空间。第二部分(解码器)采用该向量和 对其进行解码以生成原始输入。

自动编码器

用于基于ECG的生物特征识别中异常值校正的自动编码器神经网络

中间的潜在向量是我们想要的,因为它是输入的压缩表示。并且应用非常丰富,例如:

  • 压缩

  • 降维

此外,很明显,我们可以应用它们来重现相同的内容,但 数据几乎没有不同,甚至更好。例如:

  • 数据去噪:用嘈杂的图像馈送它们,并训练它们输出 图像相同,但没有噪点

  • 训练数据增强

  • 异常检测:在单个类上训练它们,以便每个异常都给出 重建误差大。

然而,自动编码器面临着与大多数神经网络相同的问题。他们 倾向于过度拟合,他们遭受梯度消失问题的困扰。有没有 溶液?

三、变分自动编码器 (VAE)

        变分自动编码器是一个相当不错和优雅的努力。它 本质上增加了随机性,但并不完全正确。

        让我们进一步解释一下。变分自动编码器经过训练以学习 对输入数据进行建模的概率分布,而不是对 映射输入和输出。然后,它从此分布中采样点 并将它们馈送到解码器以生成新的输入数据样本。但是等一下 分钟。当我听到概率分布时,只有一件事来了 想到:贝叶斯。是的,贝叶斯规则再次成为主要原则。由 方式,我不是要夸大其词,但贝叶斯公式是唯一最好的方程 曾经创建过。我不是在开玩笑。它无处不在。如果你不知道什么 是,请查一下。抛弃那篇文章,了解贝叶斯是什么。我会原谅的 你。

        回到变分自动编码器。我认为下面的图像清楚地说明了问题:

VAE

使用循环变分自动编码器进行纹理合成

        你有它。随机神经网络。在我们构建示例之前,我们的 自己生成新图像,讨论更多细节是合适的。

        VAE的一个关键方面是损失函数。最常见的是,它包括 两个组件。重建损失衡量的是 重建的数据来自原始数据(例如二进制交叉熵)。 KL-散度试图使过程正规化并保持重建 数据尽可能多样化。

def loss_function(recon_x, x, mu, logvar) -> Variable:
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784))
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    KLD /= BATCH_SIZE * 784

    return BCE + KLD

        另一个重要方面是如何训练模型。困难的发生是因为 变量是确定性的,但通常是随机和梯度下降的 不是那样工作的。为了解决这个问题,我们使用重新参数化。潜伏的 向量 (z) 将等于分布的学习均值 (μ) 加上 学习标准差 (σ) 乘以 epsilon (ε),其中 ε 遵循正态 分配。我们重新参数化样本,使随机性 与参数无关。

def reparameterize(self, mu: Variable, logvar: Variable) -> Variable:

        #mu :  mean matrix
        #logvar :  variance matrix
        if self.training:
            std = logvar.mul(0.5).exp_()  # type: Variable
            eps = Variable(std.data.new(std.size()).normal_())
            return eps.mul(std).add_(mu)
        else:
            return mu

四、使用自动编码器生成图像

        在我们的示例中,我们将尝试使用变分自动编码器生成新图像。我们将使用MNIST数据集,重建的图像将是手写的数字。正如我已经告诉过你的,我使用 Pytorch 作为一个框架,除了熟悉之外,没有特别的原因。 首先,我们应该定义我们的层。

def __init__(self):
        super(VAE, self).__init__()

        # ENCODER
        self.fc1 = nn.Linear(784, 400)
        self.relu = nn.ReLU()
        self.fc21 = nn.Linear(400, 20)  # mu layer
        self.fc22 = nn.Linear(400, 20)  # logvariance layer

        # DECODER
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)
        self.sigmoid = nn.Sigmoid()

        如您所见,我们将使用一个非常简单的网络,只有密集层(在pytorch的情况下是线性的)。 下一步是生成运行编码器和解码器的函数。

 
def encode(self, x: Variable) -> (Variable, Variable):
        h1 = self.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

 def decode(self, z: Variable) -> Variable:
        h3 = self.relu(self.fc3(z))
        return self.sigmoid(self.fc4(h3))

def forward(self, x: Variable) -> (Variable, Variable, Variable):
    mu, logvar = self.encode(x.view(-1, 784))
    z = self.reparameterize(mu, logvar)
    return self.decode(z), mu, logvar

        这只是几行python代码。没什么大不了的。最后,我们可以训练我们的模型并查看我们生成的图像。

        快速提醒:与tensorflow相比,Pytorch有一个动态图,这意味着代码是动态运行的。无需创建图然后编译执行它,Tensorflow 最近以其渴望的执行模式引入了上述功能。

optimizer = optim.Adam(model.parameters(), lr=1e-3)

def train(epoch):
    model.train()
    train_loss = 0

    for batch_idx, (data, _) in enumerate(train_loader):
        data = Variable(data)
        optimizer.zero_grad()
        recon_batch, mu, logvar = model(data)
        loss = loss_function(recon_batch, data, mu, logvar)
        loss.backward()
        train_loss += loss.data[0]
        optimizer.step()


def test(epoch):
    model.eval()
    test_loss = 0

    for i, (data, _) in enumerate(test_loader):
        data = Variable(data, volatile=True)
        recon_batch, mu, logvar = model(data)
        test_loss += loss_function(recon_batch, data, mu, logvar).data[0]

for epoch in range(1, EPOCHS + 1):
    train(epoch)
    test(epoch)

        训练完成后,我们执行测试函数来检查模型的工作情况。 事实上,它做得很好,构建的图像与原始图像几乎相同,我相信没有人能够在不了解整个故事的情况下区分它们。

        下图显示了第一行的原始照片和第二行中制作的照片。

VAE业绩

        相当不错,不是吗?

        有关自动编码器的更多详细信息,您应该查看edX的深度学习与Tensorflow课程的模块5。

        在我们结束这篇文章之前,我想再介绍一个话题。正如我们所看到的,变分自动编码器能够生成新图像。这是生成模型的经典行为。生成模型正在生成新数据。另一方面,判别模型正在对类或类别中的现有数据进行分类或区分。

        用一些数学术语来解释这一点: 生成模型学习联合概率分布 p(x,y),而判别模型学习条件概率分布 p(y|x)。

        在我看来,生成模型更有趣,因为它们为从数据增强到可能的未来状态的模拟等许多可能性打开了大门。但在下一篇文章中会有更多内容。 可能是在一篇关于一种相对较新的生成模型类型的帖子上,称为生成对抗网络。

        在那之前,继续学习人工智能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/842605.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

7月27日上课内容 Firewalld防火墙

iptables 软件防火墙 包过滤防火墙firewalld 防火墙包过滤防火墙。网络层centos7自带的默认的防火墙。取代iptables firewalld两种配置模式 运行时配置 永久配置 iptables是静态防火墙 firewalld是动态防火墙。 firewalld安装区域来进行划分: 9个区域 moba里面要打开防火墙 fi…

智慧工厂解决方案[60页PPT]

导读:原文《》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 完整版领取方式 完整版领取方式: 如需获取完整的电子版内容参考学习 您可以关注…

OpenCv.js(图像处理)学习历程

opencv.js官网 4.5.0文档 以下内容整理于opencv.js官网。 简介 OpenCV由Gary Bradski于1999年在英特尔创建。第一次发行是在2000年。OpenCV支持c、Python、Java等多种编程语言,支持Windows、Linux、Os X、Android、iOS等平台。基于CUDA和OpenCL的高速GPU操作接口也…

【Seata1.5.2 下载 配置 整合 踩坑 测试】—— 含各种踩坑记录(详细版)

💧 S e a t a 1.5.2 ——含各种踩坑记录 \color{#FF1493}{Seata1.5.2 —— 含各种踩坑记录} Seata1.5.2——含各种踩坑记录💧 🌷 仰望天空,妳我亦是行人.✨ 🦄 个人主页——微风撞见云的博客🎐 &…

KM生存分析

这个系列从2022年开始,一直更新使用R语言分析数据及绘制精美图形。小杜的生信笔记主要分享小杜学习日常!如果,你对此感兴趣可以加入该系列的学习。 最终图形 本期图形代码 ##KM生存分析 ##20230807##导入包 library(survival) library(surv…

【深度学习】StyleGANv2 2019 论文,Analyzing and Improving the Image Quality of StyleGAN

StyleGAN论文: 《A Style-Based Generator Architecture for Generative Adversarial Networks》 论文:https://arxiv.org/abs/1812.04948 代码: https://github.com/NVlabs/stylegan StyleGANv2论文: 《Analyzing and Improving …

Linux葵花宝典-无需自宫版

1. Linux简介 1.1 什么是Linux Linux,全称GNU/Linux,是一种免费使用和自由传播的类UNIX操作系统,其内核由Linus Torvalds于1991年10月5日首次发布,它主要受到Minix和Unix思想的启发,是一个基于POSIX的多用户、多任务、…

【知网检索稳定】第八届现代管理和教育技术国际学术会议(MMET2023)

第八届现代管理和教育技术国际学术会议(MMET 2023)将于2023年09月22-24日在中国上海召开。会议由四川大学、泰国程逸皇家大学、泰国程逸皇家大学中泰同文同学国际交流中心主办、乐山师范学院、四川职业技术学院、AEIC学术交流中心协办。会议主要围绕会议…

边写代码边学习之numpy

1. numpy.matmul() 用法 matmul() 用于计算两个数组的矩阵乘积。示例如下 def matmul_test():array1 np.array([[[1.0, 3], [1, 1], [2, 3]]])array2 np.array([[2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0],[1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0], ])result np.matmul(array1, …

C语言有关文件的操作

打开文件与关闭文件 在编写代码时,我有一个习惯是“保证一一对应”。 写下代码fopen()之后,还没有写对文件进行增删查改等操作的代码,先立刻写上fclose(),避免忘记关闭FILE* fd的情况。 不关闭fd,在fopen()次数较少的…

linux初始命令

如果没有ip地址,配置: 查看当前时间: 指定格式查看时间: 修改时间: 查看时区: 设置时区: 查看当前工作目录: root的家目录就是根,普通用户家目录是home

迈瑞BeneVision N17/N15/N12协议解析

迈瑞BeneVision N17/N15/N12协议解析

pdf 怎么转换成word 文档?这几种方法不容错过

pdf 怎么转换成word 文档?PDF 和 Word 都是日常工作和学习中常见的文档格式,但是它们拥有不同的特点。PDF 可以保持文档格式的一致性,并且不易修改,而 Word 则更加灵活,可以随意编辑和修改。因此,将 PDF 转…

春秋云镜 CVE-2020-26042

春秋云镜 CVE-2020-26042 Hoosk CMS v1.8.0 存在sql注入漏洞 靶标介绍 Hoosk CMS v1.8.0 install/index.php 存在sql注入漏洞。 启动场景 漏洞利用 SQL注入POC POST /install/index.php HTTP/1.1 Host: xxxx User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; r…

无涯教程-Perl - chdir函数

描述 此功能将当前工作目录更改为EXPR,如果未指定,则更改为用户的主目录。此函数调用等效于Unix命令 cd EXPR 。 语法 以下是此函数的简单语法- chdir EXPRchdir返回值 如果失败,此函数返回0,如果成功,则返回1。 例 以下是显示其基本用法的示例代码,假设您在/user/home/…

【stm32】初识stm32—stm32环境的搭建

文章目录 🛸stm32资料分享🍔stm32是什么🎄具体过程🏳️‍🌈安装驱动🎈1🎈2 🏳️‍🌈建立Start文件夹 🛸stm32资料分享 我用夸克网盘分享了「STM32入门教程资料…

Proxmox VE lxc容器中使用samba共享文件夹遇到mount error(1): Operation not permitted 的解决

问题描述: 在PVE的LXC 容器中使用samba成功创建共享并使用, 用smbclient访问共享可以正常连接和使用,但是使用 mount.cifs 或者 mount.smb3时提示权限错误 mount error(1): Operation not permitted Refer to the mount.cifs(8) manual page…

【机密计算-大厂有话说】AMD

基于 VirTEE/SEV 的 SEV-SNP 平台证明 刊号 58217,版本 v1.2,发布于 2023.7 1. 介绍 VirTEE/sev 工具箱提供了一套基于 rust 语言的简单易用的 API 来访问 AMD EPYC 处理器内的安全处理器,这个库已经早已经支持传统的 SEV 固件,最…

代理模式:静态代理+JDK/CGLIB 动态代理

文章目录 1. 代理模式2. 静态代理3. 动态代理3.1. JDK 动态代理机制3.1.1. 介绍 3.1.2. JDK 动态代理类使用步骤3.1.3. 代码示例3.2. CGLIB 动态代理机制3.2.1. 介绍3.2.2. CGLIB 动态代理类使用步骤3.2.3. 代码示例 3.3. JDK 动态代理和 CGLIB 动态代理对比 4. 静态代理和动态…

uniapp 微信小程序 封装公共的请求js(api版本)

一、新建api文件夹 在项目目录下创建api文件夹,内放files跟index.js文件夹,files文件夹内放每个页面对应的js请求接口 1、index.js /*** api接口的统一出口*/ const api {}; const requireComponent require.context(./files, false, /\.js$/) requi…