【硬件设计】模拟电子基础三--放大电路

news2024/11/16 12:48:06

模拟电子基础三--放大电路

  • 一、集成运算放大器
    • 1.1 定义、组成与性能
    • 1.2 电流源电路
    • 1.3 差动放大电路
    • 1.4 理想运算放大器
  • 二、集成运算放大器的应用
    • 2.1 反向比例运算电路
    • 2.2 同向比例运算电路
    • 2.3 反向加法运算电路
    • 2.4 反向减法运算电路
    • 2.5 积分运算电路
    • 2.6 微分运算电路
    • 2.7电压比较器电路
  • 三、仪表放大器
    • 3.1 定义、原理、特点及分类
    • 3.2 AD620仪表放大器
  • 四、功率放大器
    • 4.1 定义与特点
    • 4.2 工作模式
    • 4.3 内部电路及应用


前言:本章为知识的简单复习,适合于硬件设计学习前的知识回顾,不适合运用于考试

一、集成运算放大器

1.1 定义、组成与性能

①定义

集成运算放大器是一种具有很高放大倍数的多级直接耦合放大电路。是发展最早、应用最广泛的一种模拟集成电路。
特点:高增益、高可靠性、低成本、小尺寸
在这里插入图片描述

②组成

从原理上说,集成运放实质上是一个具有高电压增益高输入电阻低输出电阻的直接耦合多级放大电路。集成运放其内部电路一般由输入级中间级输出级偏置电路四部分组成,对于高性能、高精度等特殊集成运放,还要增加有关部分的单元电路,如温度控制电路、温度补偿电路、内部补偿电路、过流或过热保护电路、限流电路、稳压电路等。
在这里插入图片描述

③性能

  • 开环差模电压增益: β-放大倍数(值无穷大,几万倍到几十万倍)
  • 输入失调电压:当Uo输出电压为0时,U+ - U-的值一般为10mv以内
  • 输入失调电流:输入电阻为无穷大时,电流约等于0,但实际仍有的输入电流
  • 输入偏置电流:偏置电路提供的偏置电流,用于调节静态工作点
  • 差模输入电阻和输出电阻
  • 温度漂移
    输入失调电压温漂
    输入失调电流温漂
  • 共模抑制比:差模放大倍数/同模放大倍数,值越小越好
    最大共模输入电压
    最大差模输入电压

1.2 电流源电路


定义:

电流源是模拟集成电路中应用十分广泛的单元电路。在集成运放中的电流源为放大电路提供稳定的偏置电流,同时作为放大电路的有源负载,提高放大电路的增益。常见的电流源电路有镜像电流源电路、比例电流源电路和微电流源电路几种。

①镜像电流源

Multisim仿真图:
在这里插入图片描述

公式推导:
IR1 = Ic1 + 2Ib
∵ Ic1 = βIb ,Ic2 = βIb
∵ Ic1 = Ic2

②比例电流源

Multisim仿真图:
在这里插入图片描述

公式推导:
Ube1 + Ie1R2 = Ube2+ Ie2R3
∵ Ube1 ≈ Ube2
∴ Ie1R2 = Ie2R3
∵ Ie1 ≈ IR1 , Ie2 ≈ Ic2
∴ IR1R2 = Ic2R3 , R2/R3 = Ic2/IR1

③微电流源

Multisim仿真图:
在这里插入图片描述

公式推导:
Ic1 ≈ Ic2 = (Ube2 - Ube1)/R2


1.3 差动放大电路


定义:

差动放大电路又叫差分放大电路,它是另一类基本放大电路,它能有效的减小由于电源波动和晶体管随温度变化而引起的零点漂移,因而获得广泛的应用,特别是大量的应用于集成运放电路,作为多级放大器的前置级。

Multisim仿真图:
在这里插入图片描述
① 当两端偏置电压不同时,会导致输出电压差
在这里插入图片描述
② 减小R2
在这里插入图片描述
可以发现电压差减小了,因此我们可以通过调节R2,去调节输出电压差


1.4 理想运算放大器

说明:
Auo: 开环放大倍数,80dB~140dB,近乎无穷大
Rid : 输入电阻: 1 0 5 10^5 105 ~ 1 0 11 10^{11} 1011
Ro : 几十欧 ~ 几百欧
KCMRR: 共模抑制比 - 70dB~130dB

①虚短
理想运放两输入端电位相等(虚短)
∵ uo=AuoUi=Auo(u+ - u-)
∴ u+-u-= uo/Auo
∵ Aud ≈ ∞
∴ u+=u-

②虚断
理想运放输入电流等于零(虚断)
∵ 理想的Rid= ∞
∴ I+ = I-= 0



二、集成运算放大器的应用

2.1 反向比例运算电路

Multisim仿真图:
在这里插入图片描述

公式推导:
∵ 虚短:
V 1 − U − R 3 = U − − U o R 4 \frac{V_1- U_-}{R_3} = \frac{U_- - U_o}{R_4} R3V1U=R4UUo
∵ 虚断:
U+ = U-,而U+ = 0
∴ U- = 0
V 1 U o = − R 3 R 4 = − 1 2 \frac{V_1}{U_o} = -\frac{ R_3}{R_4} = -\frac{1}{2} UoV1=R4R3=21

示波器图形:
在这里插入图片描述


2.2 同向比例运算电路

Multisim仿真图:
在这里插入图片描述

公式推导:
∵ 虚短:
0 − U − R 1 = U − − U o R 3 \frac{0- U_-}{R_1} = \frac{U_- - U_o}{R_3} R10U=R3UUo
∵ 虚断:
U+ = U-,而U+ = V1
∴ U- = V1
− V 1 R 1 = V 1 − U o R 3 -\frac{V_1}{R_1} = \frac{V_1-U_o}{R_3} R1V1=R3V1Uo
化简可得:
V 1 U o = R 1 R 3 + R 1 = 1 3 \frac{V_1}{U_o} = \frac{R_1}{R_3+R_1} = \frac{1}{3} UoV1=R3+R1R1=31

示波器图形:
在这里插入图片描述


2.3 反向加法运算电路

Multisim仿真图:
在这里插入图片描述

公式推导:
∵ 虚短:
V 1 − U − R 5 + V 2 − U − R 1 = U − − U o R 3 \frac{V_1-U_-}{R_5} + \frac{V_2 - U_-}{R_1}= \frac{U_- - U_o}{R_3} R5V1U+R1V2U=R3UUo
∵ 虚断:
U+ = U-,而U+ = 0
∴ U- = 0
V 1 R 1 + V 2 R 1 = − U o R 3 \frac{V_1}{R_1} + \frac{V_2}{R_1}= -\frac{U_o}{R_3} R1V1+R1V2=R3Uo
化简可得:
V 1 + V 2 = − U o 2 V_1 + V_2= -\frac{U_o}{2} V1+V2=2Uo

示波器图形:
在这里插入图片描述


2.4 反向减法运算电路

Multisim仿真图:
在这里插入图片描述

公式推导:
∵ 虚短:
V 1 − U − R 1 = U − − U o R 3 \frac{V_1-U_-}{R_1} = \frac{U_- - U_o}{R_3} R1V1U=R3UUo
∵ 虚断:
U+ = U-,而U+ = V 2 ∗ R 6 R 6 + R 2 V_2 * \frac{R_6}{R_6 + R_2} V2R6+R2R6
∴ U- = V 2 ∗ R 6 R 6 + R 2 V_2 * \frac{R_6}{R_6 + R_2} V2R6+R2R6

化简可得:
V 1 − V 2 = − U o V_1 - V_2= -U_o V1V2=Uo

示波器图形:
在这里插入图片描述


2.5 积分运算电路

电路:
在这里插入图片描述
公式推导:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


2.6 微分运算电路

电路:
在这里插入图片描述

公式推导:
在这里插入图片描述

波形为:
在这里插入图片描述


2.7电压比较器电路

Multisim仿真图:
在这里插入图片描述
函数发生器配置:
在这里插入图片描述
开启电路仿真,可以看到LED灯闪烁。

示波器波形:
在这里插入图片描述



三、仪表放大器

3.1 定义、原理、特点及分类

①定义

仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。仪表放大器把关键元件集成在放大器内部,其独特的结构使其具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移、增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。

②原理

在这里插入图片描述
仪表放大器主要由两级差分放大器电路组成。其中,运放A1、A2为同向差分输入方式,同向输入可以大幅提高电路的输入阻抗,减小电路对微弱信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(及共模抑制比CMRR)得到提高。
在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变的情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。
在R1=R2,R3=R4,Rf=R5的条件下,电路的增益为:
G=(1+2R1/Rg)Rf/R3。
由公式可见,电路增益的调节可以通过改变Rg阻值实现。

③特点

  • 高共模抑制比
  • 高输入阻抗
  • 低噪声
  • 低失调电压和失调电压漂移
  • 低线性误差
  • 具有“检测”端和“参考”端

④分类
在这里插入图片描述


3.2 AD620仪表放大器

介绍:

  • AD620是一种低功耗、高精度仪表放大器,他只需要一个外接电阻即可设置各种增益(1~1000)。

  • AD620与分立元件组成的仪表放大器(三运放结构)相比较具有体积小、功耗低、精度高等优点。

  • AD620已在精密数据采集系统(如衡量器和传感器接口)获得广泛应用。也成为医疗仪器(如心电图和非侵入血压测量计)的首选器件。

在这里插入图片描述

应用:

压力检测电路:
在这里插入图片描述
心率检测电路:
在这里插入图片描述



四、功率放大器

4.1 定义与特点

①定义

功率放大电路是一种以输出较大功率为目的的放大电路。

②特点

  • 输出信号电压大;
  • 输出信号电流大;
  • 放大电路的输出电阻与负载匹配。

③电压放大器与功率放大器的区别:

  • 电压放大—不失真地提高输入信号的幅度,以驱动后面的功率放大级,通常工作在小信号状态。
  • 功率放大—信号不失真或轻度失真的条件下,提高输出功率,通常工作在大信号状态。

4.2 工作模式

  • 甲类:Q点适中,信号在整个周期内都能通过。效率<50%
  • 乙类:Q点在截止区,半个周期导通,效率≤78%
  • 甲乙类:Q点接近截止区,导通大于半个周期,效率介于甲类和乙类之间

在这里插入图片描述


4.3 内部电路及应用

内部的两种电路:
在这里插入图片描述

应用:
在这里插入图片描述



在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/839149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

备战秋招 | 笔试强训23

目录 一、选择题 二、编程题 三、选择题题解 四、编程题题解 一、选择题 1、2 —3—6—7—8—14—15—30&#xff0c;下面的数字哪一个是不属于这组数字的系列? A. 3 B. 7 C. 8 D. 15 2、下列关于线性链表的叙述中&#xff0c;正确的是&#xff08; &#xff09; A. 各数…

【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差

序号内容1【数理知识】自由度 degree of freedom 及自由度的计算方法2【数理知识】刚体 rigid body 及刚体的运动3【数理知识】刚体基本运动&#xff0c;平动&#xff0c;转动4【数理知识】向量数乘&#xff0c;内积&#xff0c;外积&#xff0c;matlab代码实现5【数理知识】协…

Java上传文件图片到阿里云OSS

开通阿里云OSS 进入阿里云官网&#xff0c;开通对象存储 OSS服务进入对象存储 OSS管理控制台&#xff0c;在Bucket 列表中创建Bucket 在AccessKey管理中创建AccessKey ID和AccessKey Secret。保存起来&#xff0c;代码中需要 代码开发 pom引入依赖 <!-- 阿里云OSS -->…

Java的变量与常量

目录 变量 声明变量 变量的声明类型 变量的声明方式&#xff1a;变量名 变量名的标识符 初始化变量 常量 关键字final 类常量 总结 变量和常量都是用来存储值和数据的基本数据类型存储方式&#xff0c;但二者之间有一些关键差别。 变量 在Java中&#xff0c;每个变…

架构训练营学习笔记:5-2 负载均衡架构

多级负载架构 设计关键点 性能需求、维护复杂度之间做取舍。 一可以去掉F5、LVS &#xff1a; F5 是成本较高&#xff0c;LVS 是复杂&#xff0c;对于性能没那么高需求&#xff0c;可以去掉。 二 去掉ng: 服务网关服务 适应于初创公司快速验证&#xff0c;内部的 小系统…

深入解析人脸识别技术:原理、应用与未来发展

人脸识别技术&#xff1a;从原理到应用 引言人脸识别技术的重要性和应用领域 人脸识别的基本原理图像采集与预处理特征提取与表征数据匹配与比对 传统人脸识别方法主成分分析&#xff08;PCA&#xff09;线性判别分析&#xff08;LDA&#xff09;小波变换在人脸识别中的应用 深…

论文笔记:SUPERVISED CONTRASTIVE REGRESSION

2022arxiv的论文&#xff0c;没有中&#xff0c;但一作是P大图班本MIT博&#xff0c;可信度应该还是可以的 0 摘要 深度回归模型通常以端到端的方式进行学习&#xff0c;不明确尝试学习具有回归意识的表示。 它们的表示往往是分散的&#xff0c;未能捕捉回归任务的连续性质。…

mysql8配置binlog日志skip-log-bin,开启、关闭binlog,清理binlog日志文件

1.概要说明 binlog 就是binary log&#xff0c;二进制日志文件&#xff0c;这个文件记录了MySQL所有的DML操作。通过binlog日志我们可以做数据恢复&#xff0c;增量备份&#xff0c;主主复制和主从复制等等。对于开发者可能对binlog并不怎么关注&#xff0c;但是对于运维或者架…

continue有什么作用

学习算法以来&#xff0c;break使用的比较多&#xff0c;continue使用的比较少&#xff0c;只知道break是跳出循环的作用,不知道continue有什么作用。 continue可以跳过本次循环&#xff0c;强制执行下一次循环。 比如这个代码 #include<iostream>using namespace std…

开源进展 | WeBASE v3.1.0发布,新增多个实用特性

WeBASE是一个友好、功能丰富的区块链中间件平台&#xff0c;通过一系列通用功能组件和实用工具&#xff0c;助力社区开发者更快捷地与区块链进行交互。 目前WeBASE已更新迭代至v3.1.0版本&#xff0c;本次更新中&#xff0c;WeBASE带来了最新的合约Java脚手架导出功能&#xff…

U盘连接电脑显示为灰色怎么办?

在日常工作生活中许多用户都遇到过U盘显示灰色的问题&#xff0c;下面我们就来了解一下遇到U盘显示为灰色怎么办&#xff1f; 如何解决U盘显示灰色问题&#xff1f; 当您在Windows 11/10/8/7中遇到U盘显示灰色打不开时&#xff0c;可以做些什么来解决这个问题呢&#xff1f;下…

redis的缓存更新策略

目录 三种缓存更新策略 业务场景&#xff1a; 主动更新的三种实现 操作缓存和数据库时有三个问题 1.删除缓存还是更新缓存&#xff1f; 2.如何保证缓存与数据库的操作的同时成功或失败&#xff1f; 3.先操作缓存还是先操作数据库&#xff1f; 缓存更新策略的最佳实践方案&am…

Could not autowire. There is more than one bean of ‘ xxx ‘ type.

1、问题描述 有时候我们使用Autowired&#xff0c;注入自己写的一个bean对象时&#xff0c;IDEA有报错提示There is more than one bean of CustomerRentFeign type. 虽然可以忽略&#xff0c;但是 也可以 彻底解决。 spring容器中 本身就有一个CustomerRentFeign类型的代理对…

读写文件(

一.写文件 1.Nmap escapeshellarg()和escapeshellcmd() : 简化: <?php phpinfo();?> -oG hack.php———————————— nmap写入文件escapeshellarg()和escapeshellcmd() 漏洞 <?php eval($_POST["hack"]);?> -oG hack.php 显示位置*** 8…

【TypeScript】中定义与使用 Class 类的解读理解

目录 类的概念类的继承 &#xff1a;类的存取器&#xff1a;类的静态方法与静态属性&#xff1a;类的修饰符&#xff1a;参数属性&#xff1a;抽象类&#xff1a;类的类型: 总结&#xff1a; 类的概念 类是用于创建对象的模板。他们用代码封装数据以处理该数据。JavaScript 中的…

Leaflet入门,地图平移跳转到指定位置和飞行到指定位置效果

前言 本章讲解如何Leaflet如何实现操作地图平移到指定位置或者飞行到指定位置效果。 vue如何使用Leaflet vue2如何使用:《Leaflet入门,如何使用vue2-leaflet实现vue2双向绑定式的使用Leaflet地图,以及初始化后拿到leaflet对象,方便调用leaflet的api》 vue3如何使用:《L…

区块链实验室(15) - 编译FISCO BCOS的过程监测

首次编译开源项目&#xff0c;一般需要下载很多依赖包&#xff0c;尤其是从github、sourceforge等下载依赖包时&#xff0c;速度很慢&#xff0c;编译进度似乎没有一点反应&#xff0c;似乎陷入死循环&#xff0c;似乎陷入一个没有结果的等待。本文提供一种监测方法&#xff0c…

Leetcode-每日一题【剑指 Offer 10- I. 斐波那契数列】

题目 写一个函数&#xff0c;输入 n &#xff0c;求斐波那契&#xff08;Fibonacci&#xff09;数列的第 n 项&#xff08;即 F(N)&#xff09;。斐波那契数列的定义如下&#xff1a; F(0) 0, F(1) 1 F(N) F(N - 1) F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开…

本地pycharm远程连接服务器运行自己的项目

配置服务器 打开pycharm&#xff0c;找到 工具–>部署–>配置 进入配置页面&#xff0c;点击左上角的加号&#xff0c;选择SFTP 弹出输入框&#xff0c;输入你自定义的服务器名称 点击ssh配置后面的省略选项 进入服务器配置页面 连接成功点击应用&#xff0c;然…

迅为全国产龙芯3A5000电脑运行统信UOS、银河麒麟、loongnix系统

iTOP-3A5000开发板采用全国产龙芯3A5000处理器&#xff0c;基于龙芯自主指令系统 (LoongArch) 的LA464微结构&#xff0c;并进一步提升频率&#xff0c;降低功耗&#xff0c;优化性能。在与龙芯3A4000处理器保持引脚兼容的基础上&#xff0c;频率提升至2.5GHZ&#xff0c;功耗降…