【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差

news2024/9/24 17:20:53
序号内容
1【数理知识】自由度 degree of freedom 及自由度的计算方法
2【数理知识】刚体 rigid body 及刚体的运动
3【数理知识】刚体基本运动,平动,转动
4【数理知识】向量数乘,内积,外积,matlab代码实现
5【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差
6【数理知识】已知 N>=3 个点在前后时刻的坐标,求刚体平移矩阵,旋转矩阵,且这 N>=3 点间距离始终不变代表一个刚体

文章目录

  • 1. 马同学视频例子
  • 2. 计算协方差
    • 1. 计算方式一:使用期望值
    • 2. 计算方式二:使用样本数据
    • 3. 对比两种方式
  • 3. 随机变量为二维平面的点
  • 4. 随机变量为三维空间的点
  • Ref

协方差是统计学中一个重要的概念,它用于衡量两个随机变量的总体误差。简单来说,协方差用于度量两个变量之间的线性关系。

如果协方差是正的,那么两个变量可能会同时增大或减小,这表明它们之间可能存在正相关的关系。
如果协方差是负的,那么其中一个变量增大时,另一个可能减小,这表明它们之间可能存在负相关的关系。
如果协方差是 0 0 0,那么两个变量可能不相关。

协方差的一个主要应用是在统计和概率理论中,用于衡量两个随机变量的联动性。此外,协方差矩阵在多元统计分析、信号处理、控制系统、投资组合优化等多个领域都有广泛的应用。

然而,协方差有一个缺点,就是它的值受到变量尺度的影响。例如,如果你测量同一个物理量,但是使用的单位不同(比如使用米和厘米),你会得到完全不同的协方差。为了克服这个问题,我们经常使用相关系数(协方差除以两个变量的标准差),这是一个标准化的协方差,不受尺度的影响,范围在-1到1之间。

接下来看协方差的推导过程。

1. 马同学视频例子

先看马同学图解数学中的视频讲解:如何通俗地解释协方差 - bilibili。我截取了几个关键步骤的视频截图。

使用的是身高 x i x_i xi 和体重 y i y_i yi 这两个指标为例子。
在这里插入图片描述

想要知道身高和体重的相关性,可以使用下边这种计算方式。

在这里插入图片描述

∑ ( x i − x ˉ ) ( y i − y ˉ ) (1) \begin{aligned} \sum (x_i - \bar{x})(y_i - \bar{y}) \end{aligned} \tag{1} (xixˉ)(yiyˉ)(1)

其中 x ˉ , y ˉ \bar{x}, \bar{y} xˉ,yˉ 分别表示身高,体重的平均值。

但数据差异较大时,就会出现错误判断。

在这里插入图片描述

这时候引入数据出现的概率 p i p_i pi,同时替换数字平均值 x ˉ , y ˉ \bar{x}, \bar{y} xˉ,yˉ 为加权平均值 μ X , μ Y \mu X, \mu Y μX,μY
此时公式(1)变为

∑ ( x i − x ˉ ) ( y i − y ˉ ) ∑ p i ( x i − μ X ) ( y i − μ Y ) (2) \begin{aligned} &\sum (x_i - \bar{x})(y_i - \bar{y}) \\ &\sum p_i (x_i - \mu X)(y_i - \mu Y) \end{aligned} \tag{2} (xixˉ)(yiyˉ)pi(xiμX)(yiμY)(2)

其中 μ X , μ Y \mu X, \mu Y μX,μY 表示加权平均, p i p_i pi 表示每一项的概率。

在这里插入图片描述

最后,将式子改写成期望的形式有

∑ ( x i − x ˉ ) ( y i − y ˉ ) ∑ p i ( x i − μ X ) ( y i − μ Y ) Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] (3) \begin{aligned} &\sum (x_i - \bar{x})(y_i - \bar{y}) \\ &\sum p_i (x_i - \mu X)(y_i - \mu Y) \\ \text{Cov} (X,Y) &= \text{E} [(X-\mu X)(Y-\mu Y)] \end{aligned} \tag{3} Cov(X,Y)(xixˉ)(yiyˉ)pi(xiμX)(yiμY)=E[(XμX)(YμY)](3)


2. 计算协方差

总的来说,计算协方差可以使用两种方式。区别在于是否知道全部的数据量,也就是说我们是知道随机变量的期望均值,还是仅知道样本数据的样本均值。至于期望均值和样本均值的区别,请查阅文章:【LinearAlgebra】12.1 Mean, Variance, and Probability。


第一种,当我们知道所有的数据(总数据量为 N N N)时,也就是知道了具体的期望值,可以使用公式

Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] \begin{aligned} \text{Cov} (X,Y) &= \text{E} [(X-\mu X)(Y-\mu Y)] \end{aligned} Cov(X,Y)=E[(XμX)(YμY)]

来计算。其中 μ X 、 μ Y \mu X、\mu Y μXμY 分别是 X X X Y Y Y 的期望值。


第二种是仅知道样本数据(样本数量为 n n n,总数据量为 N N N)时,可以使用公式

Cov ( X , Y ) = ∑ i n ( x i − x ˉ ) ( y i − y ˉ ) n − 1 \begin{aligned} \text{Cov} (X,Y) &= \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{n-1} \end{aligned} Cov(X,Y)=n1in(xixˉ)(yiyˉ)

来估算(注意不是计算)协方差。其中 x i 、 y i x_i、y_i xiyi 是两个随机变量已知的样本数据, x ˉ 、 y ˉ \bar{x}、\bar{y} xˉyˉ 是两个随机变量的平均值。注意这里是除以( n − 1 n-1 n1)而不是 n n n,因为这是无偏估计,当样本数据用来估计总计参数时,需要这样处理。


接下来用同一组数据,分别使用两种方式来计算协方差,看下效果。


1. 计算方式一:使用期望值

假设有两个随机变量 X = { 1 , 2 , 2 , 2 , 3 } X = \{1, 2, 2, 2, 3\} X={1,2,2,2,3} Y = { 6 , 6 , 7 , 7 , 8 } Y = \{6, 6, 7, 7, 8\} Y={6,6,7,7,8}。我们能够分别计算二者的期望均值为
μ X = ( 1 + 2 + 2 + 2 + 3 ) / 5 = 2 μ Y = ( 6 + 6 + 7 + 7 + 8 ) / 5 = 6.8 \begin{aligned} \mu X &= (1+2+2+2+3)/5=2 \\ \mu Y &= (6+6+7+7+8)/5=6.8 \end{aligned} μXμY=(1+2+2+2+3)/5=2=(6+6+7+7+8)/5=6.8

那么协方差为

Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] = [ ( 1 − 2 ) ( 6 − 6.8 ) + ( 2 − 2 ) ( 6 − 6.8 ) + ( 2 − 2 ) ( 7 − 6.8 ) + ( 2 − 2 ) ( 7 − 6.8 ) + ( 3 − 2 ) ( 8 − 6.8 ) ] / 5 = [ 0.8 + 0 + 0 + 0 + 1.2 ] / 5 = 0.4 \begin{aligned} \text{Cov} (X,Y) &= \text{E} [(X-\mu X)(Y-\mu Y)] \\ &= [(1-2)(6-6.8) + (2-2)(6-6.8) + (2-2)(7-6.8) + (2-2)(7-6.8) + (3-2)(8-6.8)] / 5 \\ &= [0.8 + 0 + 0 + 0 + 1.2] / 5 \\ &= 0.4 \end{aligned} Cov(X,Y)=E[(XμX)(YμY)]=[(12)(66.8)+(22)(66.8)+(22)(76.8)+(22)(76.8)+(32)(86.8)]/5=[0.8+0+0+0+1.2]/5=0.4

所以,这两个随机变量的协方差为 0.4 0.4 0.4


2. 计算方式二:使用样本数据

还是上边的两个随机变量。但假如我们仅知道其中的 3 3 3 个,如 X = { 1 , 2 , 2 , 3 } X = \{1, 2, 2, 3\} X={1,2,2,3} Y = { 6 , 6 , 7 , 8 } Y = \{6, 6, 7, 8\} Y={6,6,7,8},同时也不知道每个样本的概率。这时候,我们仅能计算出来样本均值,也就是

x ˉ = ( 1 + 2 + 2 + 3 ) / 4 = 2 y ˉ = ( 6 + 6 + 7 + 8 ) / 4 = 6.75 \begin{aligned} \bar{x} &= (1+2+2+3)/4=2 \\ \bar{y} &= (6+6+7+8)/4=6.75 \end{aligned} xˉyˉ=(1+2+2+3)/4=2=(6+6+7+8)/4=6.75

那么协方差为

Cov ( X , Y ) = ∑ i n ( x i − x ˉ ) ( y i − y ˉ ) n − 1 = [ ( 1 − 2 ) ( 6 − 6.75 ) + ( 2 − 2 ) ( 6 − 6.75 ) + ( 2 − 2 ) ( 7 − 6.75 ) + ( 3 − 2 ) ( 8 − 6.75 ) ] / ( 4 − 1 ) = [ 0.75 + 0 + 0 + 1.25 ] / 3 = 0.6667 \begin{aligned} \text{Cov} (X,Y) &= \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{n-1} \\ &= [(1-2)(6-6.75) + (2-2)(6-6.75) + (2-2)(7-6.75) + (3-2)(8-6.75)] / (4-1) \\ &= [0.75 + 0 + 0 + 1.25] / 3 \\ &= 0.6667 \end{aligned} Cov(X,Y)=n1in(xixˉ)(yiyˉ)=[(12)(66.75)+(22)(66.75)+(22)(76.75)+(32)(86.75)]/(41)=[0.75+0+0+1.25]/3=0.6667

所以,用这一组样本估算出来的协方差为 0.6667 0.6667 0.6667


在上述样本的基础上,假如我们知道了其概率,也就是样本为 X = { 1 , 2 , 2 , 3 } X = \{1, 2, 2, 3\} X={1,2,2,3} Y = { 6 , 6 , 7 , 8 } Y = \{6, 6, 7, 8\} Y={6,6,7,8},同时每个样本的概率为 P = { 0.2 , 0.2 , 0.4 , 0.2 } P = \{0.2, 0.2, 0.4, 0.2\} P={0.2,0.2,0.4,0.2}。那此时就可以计算出来随机变量的期望值为

μ X = 0.2 ∗ 1 + 0.2 ∗ 2 + 0.4 ∗ 2 + 0.2 ∗ 3 = 2 μ Y = 0.2 ∗ 6 + 0.2 ∗ 6 + 0.4 ∗ 7 + 0.2 ∗ 8 = 6.8 \begin{aligned} \mu X &= 0.2*1+0.2*2+0.4*2+0.2*3=2 \\ \mu Y &= 0.2*6+0.2*6+0.4*7+0.2*8=6.8 \end{aligned} μXμY=0.21+0.22+0.42+0.23=2=0.26+0.26+0.47+0.28=6.8

计算协方差为

Cov ( X , Y ) = ∑ p i ( x i − μ X ) ( y i − μ Y ) = 0.2 ∗ ( 1 − 2 ) ( 6 − 8 ) + 0.2 ∗ ( 2 − 2 ) ( 6 − 8 ) + 0.4 ∗ ( 2 − 2 ) ( 7 − 8 ) + 0.2 ∗ ( 3 − 2 ) ( 8 − 8 ) = 0.2 ∗ ( 2 ) + 0.2 ∗ ( 0 ) + 0.4 ∗ ( 0 ) + 0.2 ∗ ( 0 ) = 0.4 \begin{aligned} \text{Cov} (X,Y) &= \sum p_i (x_i - \mu X)(y_i - \mu Y) \\ &= 0.2*(1-2)(6-8) + 0.2*(2-2)(6-8) + 0.4*(2-2)(7-8) + 0.2*(3-2)(8-8) \\ &= 0.2*(2) + 0.2*(0) + 0.4*(0) + 0.2*(0) \\ &= 0.4 \end{aligned} Cov(X,Y)=pi(xiμX)(yiμY)=0.2(12)(68)+0.2(22)(68)+0.4(22)(78)+0.2(32)(88)=0.2(2)+0.2(0)+0.4(0)+0.2(0)=0.4


3. 对比两种方式

至于为什么知道了样本的概率就能知道精准知道协方差了,可以看一下数据的排列。

首先,全部数据可以排列成

Data N = [ x i 1 2 2 2 3 y i 6 6 7 7 8 p i 0.2 0.2 0.2 0.2 0.2 ] = [ x i 1 2 2 3 y i 6 6 7 8 p i 0.2 0.2 0.4 0.2 ] \text{Data}_N = \left[\begin{matrix} x_i & 1 & 2 & 2 & 2 & 3 \\ y_i & 6 & 6 & 7 & 7 & 8 \\ p_i & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ \end{matrix}\right] =\left[\begin{matrix} x_i & 1 & 2 & 2 & 3 \\ y_i & 6 & 6 & 7 & 8 \\ p_i & 0.2 & 0.2 & 0.4 & 0.2 \\ \end{matrix}\right] DataN= xiyipi160.2260.2270.2270.2380.2 = xiyipi160.2260.2270.4380.2

而使用样本估算的方法时,我们用的应该是

Data n = [ x i 1 2 2 3 y i 6 6 7 8 p i 0.25 0.25 0.25 0.25 ] \text{Data}_n = \left[\begin{matrix} x_i & 1 & 2 & 2 & 3 \\ y_i & 6 & 6 & 7 & 8 \\ p_i & 0.25 & 0.25 & 0.25 & 0.25 \\ \end{matrix}\right] Datan= xiyipi160.25260.25270.25380.25

所以,对比观看一下可以知道,我们在样本估算时,实际也是假设了每个样本出现的概率都是相同的。


3. 随机变量为二维平面的点

在上述描述中,我们随机变量中的样本都是数字,也就是每个样本数据的维度都是 1 1 1 维的。接下来假设样本为二维平面中的点,也就是样本数据的维度为 2 2 2 维。

假设随机变量的样本为: X = { ( 1 , 2 ) , ( 3 , 4 ) , ( 5 , 6 ) } X = \{(1,2), (3,4), (5,6)\} X={(1,2),(3,4),(5,6)} Y = { ( 2 , 3 ) , ( 4 , 5 ) , ( 6 , 7 ) } Y = \{(2,3), (4,5), (6,7)\} Y={(2,3),(4,5),(6,7)}。首先计算均值为

x ˉ = ( 1 + 3 + 5 , 2 + 4 + 6 ) / 3 = ( 3 , 4 ) y ˉ = ( 2 + 4 + 6 , 3 + 5 + 7 ) / 3 = ( 4 , 5 ) \begin{aligned} \bar{x} &= (1+3+5, 2+4+6)/3=(3,4) \\ \bar{y} &= (2+4+6, 3+5+7)/3=(4,5) \end{aligned} xˉyˉ=(1+3+5,2+4+6)/3=(3,4)=(2+4+6,3+5+7)/3=(4,5)

然后,我们计算协方差矩阵。在这种情况下,协方差矩阵是一个 2 × 2 2 \times 2 2×2 的矩阵,其每个元素 Cov ( X , Y ) i j \text{Cov}(X,Y)_{ij} Cov(X,Y)ij X X X 的第 i i i 个维度和 Y Y Y 的第 j j j 个维度的协方差。在这种情况下,我们计算的是 X X X Y Y Y 之间的协方差,而不是 X X X Y Y Y 内部的协方差,所以我们是在计算 X X X 的第 i i i 个维度和 Y Y Y 的第 j j j 个维度。

矩阵的每一个元素 ( i , j ) (i,j) (i,j) 都是通过以下公式计算得到的:

Cov ( X , Y ) i j = ∑ k n = 3 ( x k i − x ˉ i ) ( y k j − y ˉ i ) n − 1 \begin{aligned} \text{Cov} (X,Y)_{ij} &= \frac{\sum_k^{n=3} (x_{ki} - \bar{x}_i)(y_{kj} - \bar{y}_i)}{n-1} \end{aligned} Cov(X,Y)ij=n1kn=3(xkixˉi)(ykjyˉi)

其中 x k i x_{ki} xki 表示第 k k k 个样本的第 i i i 个维度的值, x ˉ i \bar{x}_i xˉi 表示均值的第 i i i 个维度。

依次代入数值并展开有

Cov ( X , Y ) i = 1 , j = 1 = ( 1 − 3 ) ( 2 − 4 ) + ( 3 − 3 ) ( 4 − 4 ) + ( 5 − 3 ) ( 6 − 4 ) 3 − 1 = 4 Cov ( X , Y ) i = 1 , j = 2 = ( 1 − 3 ) ( 3 − 5 ) + ( 3 − 3 ) ( 5 − 5 ) + ( 5 − 3 ) ( 7 − 5 ) 3 − 1 = 4 \begin{aligned} \text{Cov} (X,Y)_{i=1,j=1} &= \frac{(1-3)(2-4) + (3-3)(4-4) + (5-3)(6-4)}{3-1} = 4 \\ \text{Cov} (X,Y)_{i=1,j=2} &= \frac{(1-3)(3-5) + (3-3)(5-5) + (5-3)(7-5)}{3-1} = 4 \end{aligned} Cov(X,Y)i=1,j=1Cov(X,Y)i=1,j=2=31(13)(24)+(33)(44)+(53)(64)=4=31(13)(35)+(33)(55)+(53)(75)=4

Cov ( X , Y ) i = 2 , j = 1 = ( 2 − 4 ) ( 2 − 4 ) + ( 4 − 4 ) ( 4 − 4 ) + ( 6 − 4 ) ( 6 − 4 ) 3 − 1 = 4 Cov ( X , Y ) i = 2 , j = 2 = ( 2 − 4 ) ( 3 − 5 ) + ( 4 − 4 ) ( 5 − 5 ) + ( 6 − 4 ) ( 7 − 5 ) 3 − 1 = 4 \begin{aligned} \text{Cov} (X,Y)_{i=2,j=1} &= \frac{(2-4)(2-4) + (4-4)(4-4) + (6-4)(6-4)}{3-1} = 4 \\ \text{Cov} (X,Y)_{i=2,j=2} &= \frac{(2-4)(3-5) + (4-4)(5-5) + (6-4)(7-5)}{3-1} = 4 \end{aligned} Cov(X,Y)i=2,j=1Cov(X,Y)i=2,j=2=31(24)(24)+(44)(44)+(64)(64)=4=31(24)(35)+(44)(55)+(64)(75)=4

故协方差矩阵为

Cov ( X , Y ) = [ 4 4 4 4 ] \begin{aligned} \text{Cov} (X,Y) &= \left[\begin{matrix} 4 & 4 \\ 4 & 4 \\ \end{matrix}\right] \end{aligned} Cov(X,Y)=[4444]


4. 随机变量为三维空间的点

接下来假设样本为三维空间中的点,也就是样本数据的维度为 3 3 3 维。

假设随机变量的样本为: X = { ( 1 , 2 , 3 ) , ( 4 , 5 , 6 ) , ( 7 , 8 , 9 ) } X = \{(1,2,3), (4,5,6), (7,8,9)\} X={(1,2,3),(4,5,6),(7,8,9)} Y = { ( 2 , 3 , 4 ) , ( 5 , 6 , 7 ) , ( 8 , 9 , 10 ) } Y = \{(2,3,4), (5,6,7), (8,9,10)\} Y={(2,3,4),(5,6,7),(8,9,10)}。首先计算均值为

x ˉ = ( 1 + 4 + 7 , 2 + 5 + 8 , 3 + 6 + 9 ) / 3 = ( 4 , 5 , 6 ) y ˉ = ( 2 + 5 + 8 , 3 + 6 + 9 , 4 + 7 + 10 ) / 3 = ( 5 , 6 , 7 ) \begin{aligned} \bar{x} &= (1+4+7, 2+5+8, 3+6+9)/3=(4, 5, 6) \\ \bar{y} &= (2+5+8, 3+6+9, 4+7+10)/3=(5, 6, 7) \end{aligned} xˉyˉ=(1+4+7,2+5+8,3+6+9)/3=(4,5,6)=(2+5+8,3+6+9,4+7+10)/3=(5,6,7)

然后,我们计算协方差矩阵。在这种情况下,协方差矩阵是一个 3 × 3 3 \times 3 3×3 的矩阵,其每个元素 Cov ( X , Y ) i j \text{Cov}(X,Y)_{ij} Cov(X,Y)ij X X X 的第 i i i 个维度和 Y Y Y 的第 j j j 个维度的协方差。

矩阵的每一个元素 ( i , j ) (i,j) (i,j) 都是通过以下公式计算得到的:

Cov ( X , Y ) i j = ∑ k n = 3 ( x k i − x ˉ i ) ( y k j − y ˉ i ) n − 1 \begin{aligned} \text{Cov} (X,Y)_{ij} &= \frac{\sum_k^{n=3} (x_{ki} - \bar{x}_i)(y_{kj} - \bar{y}_i)}{n-1} \end{aligned} Cov(X,Y)ij=n1kn=3(xkixˉi)(ykjyˉi)

依次代入数值并展开有

Cov ( X , Y ) i = 1 , j = 1 = ( 1 − 4 ) ( 2 − 5 ) + ( 4 − 4 ) ( 3 − 5 ) + ( 7 − 4 ) ( 4 − 5 ) 3 − 1 = 3 Cov ( X , Y ) i = 1 , j = 2 = ( 1 − 4 ) ( 5 − 6 ) + ( 4 − 4 ) ( 6 − 6 ) + ( 7 − 4 ) ( 7 − 6 ) 3 − 1 = 3 Cov ( X , Y ) i = 1 , j = 3 = ( 1 − 4 ) ( 8 − 7 ) + ( 4 − 4 ) ( 9 − 7 ) + ( 7 − 4 ) ( 10 − 7 ) 3 − 1 = 3 \begin{aligned} \text{Cov} (X,Y)_{i=1,j=1} &= \frac{(1-4)(2-5) + (4-4)(3-5) + (7-4)(4-5)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=1,j=2} &= \frac{(1-4)(5-6) + (4-4)(6-6) + (7-4)(7-6)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=1,j=3} &= \frac{(1-4)(8-7) + (4-4)(9-7) + (7-4)(10-7)}{3-1} = 3 \end{aligned} Cov(X,Y)i=1,j=1Cov(X,Y)i=1,j=2Cov(X,Y)i=1,j=3=31(14)(25)+(44)(35)+(74)(45)=3=31(14)(56)+(44)(66)+(74)(76)=3=31(14)(87)+(44)(97)+(74)(107)=3

Cov ( X , Y ) i = 2 , j = 1 = ( 2 − 5 ) ( 2 − 5 ) + ( 5 − 5 ) ( 3 − 5 ) + ( 8 − 5 ) ( 4 − 5 ) 3 − 1 = 3 Cov ( X , Y ) i = 2 , j = 2 = ( 2 − 5 ) ( 5 − 6 ) + ( 5 − 5 ) ( 6 − 6 ) + ( 8 − 5 ) ( 7 − 6 ) 3 − 1 = 3 Cov ( X , Y ) i = 2 , j = 3 = ( 2 − 5 ) ( 8 − 7 ) + ( 5 − 5 ) ( 9 − 7 ) + ( 8 − 5 ) ( 10 − 7 ) 3 − 1 = 3 \begin{aligned} \text{Cov} (X,Y)_{i=2,j=1} &= \frac{(2-5)(2-5) + (5-5)(3-5) + (8-5)(4-5)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=2,j=2} &= \frac{(2-5)(5-6) + (5-5)(6-6) + (8-5)(7-6)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=2,j=3} &= \frac{(2-5)(8-7) + (5-5)(9-7) + (8-5)(10-7)}{3-1} = 3 \end{aligned} Cov(X,Y)i=2,j=1Cov(X,Y)i=2,j=2Cov(X,Y)i=2,j=3=31(25)(25)+(55)(35)+(85)(45)=3=31(25)(56)+(55)(66)+(85)(76)=3=31(25)(87)+(55)(97)+(85)(107)=3

Cov ( X , Y ) i = 3 , j = 1 = ( 3 − 6 ) ( 2 − 5 ) + ( 6 − 6 ) ( 3 − 5 ) + ( 9 − 6 ) ( 4 − 5 ) 3 − 1 = 3 Cov ( X , Y ) i = 3 , j = 2 = ( 3 − 6 ) ( 5 − 6 ) + ( 6 − 6 ) ( 6 − 6 ) + ( 9 − 6 ) ( 7 − 6 ) 3 − 1 = 3 Cov ( X , Y ) i = 3 , j = 3 = ( 3 − 6 ) ( 8 − 7 ) + ( 6 − 6 ) ( 9 − 7 ) + ( 9 − 6 ) ( 10 − 7 ) 3 − 1 = 3 \begin{aligned} \text{Cov} (X,Y)_{i=3,j=1} &= \frac{(3-6)(2-5) + (6-6)(3-5) + (9-6)(4-5)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=3,j=2} &= \frac{(3-6)(5-6) + (6-6)(6-6) + (9-6)(7-6)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=3,j=3} &= \frac{(3-6)(8-7) + (6-6)(9-7) + (9-6)(10-7)}{3-1} = 3 \end{aligned} Cov(X,Y)i=3,j=1Cov(X,Y)i=3,j=2Cov(X,Y)i=3,j=3=31(36)(25)+(66)(35)+(96)(45)=3=31(36)(56)+(66)(66)+(96)(76)=3=31(36)(87)+(66)(97)+(96)(107)=3

故协方差矩阵为

Cov ( X , Y ) = [ 3 3 3 3 3 3 3 3 3 ] \begin{aligned} \text{Cov} (X,Y) &= \left[\begin{matrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ \end{matrix}\right] \end{aligned} Cov(X,Y)= 333333333


Ref

  1. 如何通俗地解释协方差 - bilibili
  2. 从3组对应点中求得最佳的旋转和平移变换

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/839147.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java上传文件图片到阿里云OSS

开通阿里云OSS 进入阿里云官网&#xff0c;开通对象存储 OSS服务进入对象存储 OSS管理控制台&#xff0c;在Bucket 列表中创建Bucket 在AccessKey管理中创建AccessKey ID和AccessKey Secret。保存起来&#xff0c;代码中需要 代码开发 pom引入依赖 <!-- 阿里云OSS -->…

Java的变量与常量

目录 变量 声明变量 变量的声明类型 变量的声明方式&#xff1a;变量名 变量名的标识符 初始化变量 常量 关键字final 类常量 总结 变量和常量都是用来存储值和数据的基本数据类型存储方式&#xff0c;但二者之间有一些关键差别。 变量 在Java中&#xff0c;每个变…

架构训练营学习笔记:5-2 负载均衡架构

多级负载架构 设计关键点 性能需求、维护复杂度之间做取舍。 一可以去掉F5、LVS &#xff1a; F5 是成本较高&#xff0c;LVS 是复杂&#xff0c;对于性能没那么高需求&#xff0c;可以去掉。 二 去掉ng: 服务网关服务 适应于初创公司快速验证&#xff0c;内部的 小系统…

深入解析人脸识别技术:原理、应用与未来发展

人脸识别技术&#xff1a;从原理到应用 引言人脸识别技术的重要性和应用领域 人脸识别的基本原理图像采集与预处理特征提取与表征数据匹配与比对 传统人脸识别方法主成分分析&#xff08;PCA&#xff09;线性判别分析&#xff08;LDA&#xff09;小波变换在人脸识别中的应用 深…

论文笔记:SUPERVISED CONTRASTIVE REGRESSION

2022arxiv的论文&#xff0c;没有中&#xff0c;但一作是P大图班本MIT博&#xff0c;可信度应该还是可以的 0 摘要 深度回归模型通常以端到端的方式进行学习&#xff0c;不明确尝试学习具有回归意识的表示。 它们的表示往往是分散的&#xff0c;未能捕捉回归任务的连续性质。…

mysql8配置binlog日志skip-log-bin,开启、关闭binlog,清理binlog日志文件

1.概要说明 binlog 就是binary log&#xff0c;二进制日志文件&#xff0c;这个文件记录了MySQL所有的DML操作。通过binlog日志我们可以做数据恢复&#xff0c;增量备份&#xff0c;主主复制和主从复制等等。对于开发者可能对binlog并不怎么关注&#xff0c;但是对于运维或者架…

continue有什么作用

学习算法以来&#xff0c;break使用的比较多&#xff0c;continue使用的比较少&#xff0c;只知道break是跳出循环的作用,不知道continue有什么作用。 continue可以跳过本次循环&#xff0c;强制执行下一次循环。 比如这个代码 #include<iostream>using namespace std…

开源进展 | WeBASE v3.1.0发布,新增多个实用特性

WeBASE是一个友好、功能丰富的区块链中间件平台&#xff0c;通过一系列通用功能组件和实用工具&#xff0c;助力社区开发者更快捷地与区块链进行交互。 目前WeBASE已更新迭代至v3.1.0版本&#xff0c;本次更新中&#xff0c;WeBASE带来了最新的合约Java脚手架导出功能&#xff…

U盘连接电脑显示为灰色怎么办?

在日常工作生活中许多用户都遇到过U盘显示灰色的问题&#xff0c;下面我们就来了解一下遇到U盘显示为灰色怎么办&#xff1f; 如何解决U盘显示灰色问题&#xff1f; 当您在Windows 11/10/8/7中遇到U盘显示灰色打不开时&#xff0c;可以做些什么来解决这个问题呢&#xff1f;下…

redis的缓存更新策略

目录 三种缓存更新策略 业务场景&#xff1a; 主动更新的三种实现 操作缓存和数据库时有三个问题 1.删除缓存还是更新缓存&#xff1f; 2.如何保证缓存与数据库的操作的同时成功或失败&#xff1f; 3.先操作缓存还是先操作数据库&#xff1f; 缓存更新策略的最佳实践方案&am…

Could not autowire. There is more than one bean of ‘ xxx ‘ type.

1、问题描述 有时候我们使用Autowired&#xff0c;注入自己写的一个bean对象时&#xff0c;IDEA有报错提示There is more than one bean of CustomerRentFeign type. 虽然可以忽略&#xff0c;但是 也可以 彻底解决。 spring容器中 本身就有一个CustomerRentFeign类型的代理对…

读写文件(

一.写文件 1.Nmap escapeshellarg()和escapeshellcmd() : 简化: <?php phpinfo();?> -oG hack.php———————————— nmap写入文件escapeshellarg()和escapeshellcmd() 漏洞 <?php eval($_POST["hack"]);?> -oG hack.php 显示位置*** 8…

【TypeScript】中定义与使用 Class 类的解读理解

目录 类的概念类的继承 &#xff1a;类的存取器&#xff1a;类的静态方法与静态属性&#xff1a;类的修饰符&#xff1a;参数属性&#xff1a;抽象类&#xff1a;类的类型: 总结&#xff1a; 类的概念 类是用于创建对象的模板。他们用代码封装数据以处理该数据。JavaScript 中的…

Leaflet入门,地图平移跳转到指定位置和飞行到指定位置效果

前言 本章讲解如何Leaflet如何实现操作地图平移到指定位置或者飞行到指定位置效果。 vue如何使用Leaflet vue2如何使用:《Leaflet入门,如何使用vue2-leaflet实现vue2双向绑定式的使用Leaflet地图,以及初始化后拿到leaflet对象,方便调用leaflet的api》 vue3如何使用:《L…

区块链实验室(15) - 编译FISCO BCOS的过程监测

首次编译开源项目&#xff0c;一般需要下载很多依赖包&#xff0c;尤其是从github、sourceforge等下载依赖包时&#xff0c;速度很慢&#xff0c;编译进度似乎没有一点反应&#xff0c;似乎陷入死循环&#xff0c;似乎陷入一个没有结果的等待。本文提供一种监测方法&#xff0c…

Leetcode-每日一题【剑指 Offer 10- I. 斐波那契数列】

题目 写一个函数&#xff0c;输入 n &#xff0c;求斐波那契&#xff08;Fibonacci&#xff09;数列的第 n 项&#xff08;即 F(N)&#xff09;。斐波那契数列的定义如下&#xff1a; F(0) 0, F(1) 1 F(N) F(N - 1) F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开…

本地pycharm远程连接服务器运行自己的项目

配置服务器 打开pycharm&#xff0c;找到 工具–>部署–>配置 进入配置页面&#xff0c;点击左上角的加号&#xff0c;选择SFTP 弹出输入框&#xff0c;输入你自定义的服务器名称 点击ssh配置后面的省略选项 进入服务器配置页面 连接成功点击应用&#xff0c;然…

迅为全国产龙芯3A5000电脑运行统信UOS、银河麒麟、loongnix系统

iTOP-3A5000开发板采用全国产龙芯3A5000处理器&#xff0c;基于龙芯自主指令系统 (LoongArch) 的LA464微结构&#xff0c;并进一步提升频率&#xff0c;降低功耗&#xff0c;优化性能。在与龙芯3A4000处理器保持引脚兼容的基础上&#xff0c;频率提升至2.5GHZ&#xff0c;功耗降…

Nodejs实现读写文件和文件流

在Nodejs中&#xff0c;文件操作是非常常见的任务之一。它允许我们读取和写入文件&#xff0c;以及处理大型文件而不会消耗太多内存。本篇博文将会首先介绍一下文件和文件流的区别&#xff0c;然后全面介绍如何在Nodejs中实现文件操作和读写&#xff0c;包括使用文件系统模块&a…

echarts 图例组件legend配置

legend 图例组件展示不同系列的图表类型标记、颜色、和名称。可以通过点击来控制哪个系列不展示。对于饼图来说&#xff0c;控制哪个数据不展示。 $> echarts5.4.0简单画一个饼图作为示例,设置legend:{show:true}展示图例。 const options {legend: {show: true,},series…