文章目录
- 链表基础
- 题型
- 一、单链表翻转、反转、旋转
- 1.反转链表
- 2.反转链表II——反转部分链表
- 3.旋转链表
- 4.K个一组翻转链表
- 5.反转偶数长度组的节点
- 二、删除单链表中的结点
- 1.删除链表的结点
- 2.删除未排序链表中的重复节点
- 3.删除已排序链表中的重复元素I——重复元素只剩下一个
- 4.删除已排序链表中的重复元素II——重复元素全部删除
- 5.删除链表的倒数第n个结点
- 6.从链表中移除结点
- 7.删除链表的中间结点
- 8.从链表中删除总和值为零的连续节点
- 9.删除链表中的结点
- 三、链表排序
- 1.单链表排序
- 2.合并k个升序单链表
- 3.重排单链表
- 4.排序的循环链表
- 5.对单链表进行插入排序
- 四、回文链表
- 1.判断回文链表
- 五、环形链表
- 1.判断环形链表:判断链表中是否存在环,如图:链表尾部结点连接到了链表中间结点。
- 2.环形链表II:返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
- 六、获取链表结点
- 1.返回倒数第k个节点
- 5.交换链表节点
- 七、链表相交
- 八、链表合并
- 九、链表的计算
- 1.两数相加II
- 3.链表最大孪生和
- 4.二进制链表转整数
- 十、分割链表
- 1.分割链表
- 2.分隔链表
- 链表与二叉树
- 1.BiNode
- 2.特定深度结点链表
- 3.二叉树中的链表
- 4.填充每个结点的下一个右侧节点指针
- 5.二叉树展开为链表
- 6.有序链表转化平衡二叉搜索树
- 通过链表解题
- 1.使数组按非递减顺序排列——链表+单调栈
- 链表的复制
- 1.复杂链表的复制
- 双向链表
- 1.扁平化多级双向链表
- 2.二叉搜索树与双向循环链表
- 链表设计题
- 1.设计哈希集合
- 2.LRU缓存
- 3.LFU缓存
- 4.设计浏览器缓存
- 5.设计循环队列
- 6.设计循环双端队列
- 7.设计前中后队列
- 8.设计链表
- 9.设计推特
- 其它
- 1.链表组件
- [2.找出临界点之间的最小和最大距离]
链表基础
链表的类型有三种:单链表、双链表、循环链表。
1.单链表:
2.双链表:
3. 循环链表:
链表定义结构:
- 单链表
struct ListNode {
int val;
ListNode *next;
ListNode() : val(0), next(nullptr) {}
ListNode(int x) : val(x), next(nullptr) {}
ListNode(int x, ListNode *next) : val(x), next(next) {}
};
- 循环链表
class Node {
public:
int val;
Node* next;
Node() {}
Node(int _val) {
val = _val;
next = NULL;
}
Node(int _val, Node* _next) {
val = _val;
next = _next;
}
};
题型
一、单链表翻转、反转、旋转
1.反转链表
递归法:
class Solution {
public:
ListNode* reverseList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* newHead = reverseList(head->next);
head->next->next = head;
head->next = nullptr;
return newHead;
}
};
2.反转链表II——反转部分链表
牵针引线法:
class Solution {
public:
ListNode* reverseBetween(ListNode* head, int left, int right) {
ListNode* dummyHead = new ListNode(-1);
dummyHead->next = head;
// pre指针指向旋转部分前的最后一个结点
ListNode* pre = dummyHead;
for (int i = 1; i < left; ++i) {
pre = pre->next;
}
// curr指向已旋转部分完毕的最后一个结点
ListNode* curr = pre->next;
// next指向待插入的结点(也是curr的下一个结点)
ListNode* next = curr->next;
// 插入right-left次即可完成翻转
for (int i = 0; i < right - left; ++i) {
// cout << pre->val << " " << curr->val << " " << next->val << endl;
curr->next = next->next;
next->next = pre->next;
pre->next = next;
next = curr->next;
}
return dummyHead->next;
}
};
需要存储三个变量:
- pre指向待反转链表的前一个结点1(永远不变)
- curr指向待反转链表的第一个结点2,也是已反转部分的最后一个结点(永远不变)
(例如需要反转ABCD,curr指向A结点,操作2次后已反转成CBAD,curr还是指向A结点,代表的是已反转部分的最后一个结点) - next指向待插入到已反转部分前面的结点(指向curr的下一个结点,由于curr的下一个节点会变化,所以每一次操作都需要更新)
- 第一次牵针引线(将结点3插入到pre结点之后):
操作步骤(1)(2)(3)顺序不能改变:
- (1) 将curr的下一个结点指向next的下一个结点
curr->next = next->next;
- (2) 将next的下一个结点指向pre的下一个结点(注意不是curr结点)
next->next = pre->next;
- (3) 将pre的下一个结点指向next结点
pre->next = next;
步骤(1)依赖于next的下一个结点,所以步骤(2)必须在步骤(1)之后;步骤(2)依赖于pre的下一个结点,所以步骤(3)必须(2)之后;
- 第二次牵针引线(将结点4插入到pre结点之后):
第二次插入完成后链表反转完成:1->4->3->2->5
总共需要right-left
次“牵针引线”操作即可完成反转。
3.旋转链表
class Solution {
public:
// n为链表长度,当k大于n时,k=k%n+1
// 向右移动k位后,结点排列为前k个数为n-k+1到n;后n-k个数为1到n-k
ListNode* rotateRight(ListNode* head, int k) {
if (k == 0 || head == nullptr) { // *注意特殊情况
return head;
} // 先遍历一遍获得链表长度
ListNode* p = head;
int n = 1;
while (p->next != nullptr) {
++n;
p = p->next;
}
k = k % n;
// 构造循环链表
p->next = head;
// 将链表从n-k到n-k+1中间断开
p = head;
for (int i = 1; i < n - k; ++i, p = p->next) {} // p走到n-k结点 *注意p++和p=p->next不能替换
ListNode* tmp = p;
p = p->next;
tmp->next = nullptr;
return p;
}
};
4.K个一组翻转链表
- 仍然是牵针引线,翻转k个结点,每组进行k-1次插入操作即可。翻转前,先判断是否至少还有k个节点剩余。
class Solution {
public:
// 判断还有没有k个结点待反翻转
bool canReverse(ListNode* p, int k) {
int num = 0;
while (p) {
p = p->next;
++num;
if (num >= k) {
return true;
}
}
return false;
}
ListNode* reverseKGroup(ListNode* head, int k) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* dummyHead = new ListNode(-1, head);
ListNode* pre = dummyHead;
ListNode* curr = head;
ListNode* next = curr->next;
ListNode* p = pre;
while (canReverse(p->next, k)) {
int num = k - 1;
while (num--) { // 插入k-1次即完成一组翻转
curr->next = next->next;
next->next = pre->next;
pre->next = next;
next = curr->next;
}
pre = curr;
p = pre;
if (next != nullptr) {
curr = curr->next;
next = next->next;
} else {
break;
}
}
return dummyHead->next;
}
};
5.反转偶数长度组的节点
class Solution {
public:
ListNode* reverseEvenLengthGroups(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* pre = head;
ListNode* next;
ListNode* p = head->next;
int groupNum = 2;
int curNum = 1;
while (p && p->next) {
while (p->next && curNum < groupNum) {
p = p->next;
++curNum;
}
if (curNum % 2 == 0) {
next = p->next;
p->next = nullptr;
ListNode* node = pre->next;
pre->next = reverseList(pre->next);
node->next = next;
pre = node;
p = pre->next;
} else {
pre = p;
if (p) {
p = p->next;
}
}
groupNum += 1;
curNum = 1;
}
return head;
}
ListNode* reverseList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* newHead = reverseList(head->next);
head->next->next = head;
head->next = nullptr;
return newHead;
}
};
二、删除单链表中的结点
1.删除链表的结点
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* deleteNode(ListNode* head, int val) {
ListNode* dummyHead = new ListNode(-1);
dummyHead->next = head;
ListNode* p = dummyHead;
while (p->next != nullptr) {
if (p->next->val == val) {
p->next = p->next->next;
break;
}
p = p->next;
}
ListNode* res = dummyHead->next;
delete dummyHead;
return res;
}
};
2.删除未排序链表中的重复节点
- 若要求空间复杂度O(n),则可以使用哈希表存储每个元素是否出现。时间复杂度可达O(n)。
class Solution {
public:
ListNode* removeDuplicateNodes(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
unordered_map<int, int> cnt;
ListNode* p = head;
cnt[head->val] = 1;
while (p->next != nullptr) {
if (cnt[p->next->val] > 0) { // 已经出现过的结点删除
p->next = p->next->next;
} else {
cnt[p->next->val] = 1;
p = p->next;
}
}
return head;
}
};
- 若要求空间复杂度O(1),则只能以时间换空间,通过两重循环遍历实现,时间复杂度O(n^2)。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* removeDuplicateNodes(ListNode* head) {
ListNode* p = head;
while (p != nullptr) {
ListNode* q = p;
while (q->next != nullptr) {
if (q->next->val == p->val) { // *注意写法:需要通过q->next的值与p的值比较,如果是比较q与p,则无法删除q节点(不知道前驱结点
q->next = q->next->next; // 删除q->next这个重复结点
} else {
q = q->next;
}
}
p = p->next;
}
return head;
}
};
3.删除已排序链表中的重复元素I——重复元素只剩下一个
class Solution {
public:
ListNode* deleteDuplicates(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* p = head->next; // 快指针
ListNode* q = head; // 慢指针
ListNode* res = q;
while (p != nullptr) {
if (p->val != q->val) {
q->next = p;
q = q->next;
}
p = p->next;
}
q->next = nullptr;
return res;
}
};
4.删除已排序链表中的重复元素II——重复元素全部删除
class Solution {
public:
ListNode* deleteDuplicates(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* dummyHead = new ListNode(-101, head);
ListNode* p = dummyHead;
ListNode* q;
while (p != nullptr && p->next != nullptr) {
q = p->next->next;
if (q && q->val == p->next->val) {
// 找到下一个值不等于p->next值的节点q
while (q && q->val == p->next->val) {
q = q->next;
}
p->next = q;
} else {
p = p->next;
}
}
return dummyHead->next;
}
};
5.删除链表的倒数第n个结点
- 方法一:先遍历一遍计算链表长度,再遍历第2遍删除倒数第n个结点
class Solution {
public:
// 获取链表长度
int getLength(ListNode* head) {
int len = 0;
while (head != nullptr) {
++len;
head = head->next;
}
return len;
}
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode* dummyHead = new ListNode(-1);
dummyHead->next = head;
int len = getLength(head);
ListNode* p = dummyHead;
// p走到倒数第n个结点的前驱结点
for (int i = 1; i < len - n + 1; ++i) {
p = p->next;
}
// 删除倒数第n个结点
p->next = p->next->next;
// 删除dummy节点,防止内存泄露
ListNode* ans = dummyHead->next;
delete dummyHead;
return ans;
}
}
- 方法二:使用快慢双指针,在快指针先走n+1步后慢指针再出发,当快指针到达链表尾部时,慢指针此时位于倒数第n个结点的前驱结点。
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
// 使用dummy头结点,防止头结点被删
ListNode* dummyHead = new ListNode(-1, head);
ListNode* fast = dummyHead;
ListNode* slow = dummyHead;
// 快指针先走n + 1个结点
for (int i = 0; i <= n; ++i) {
fast = fast->next;
}
// 快指针领先n + 1个结点后,快慢指针一起走,快指针走到nullptr时,慢指针正好指向倒数第n个结点的前驱结点
while (fast != nullptr) {
fast = fast->next;
slow = slow->next;
}
// 删除倒数第n个结点
slow->next = slow->next->next;
// 删除dummy节点,防止内存泄露
ListNode* ans = dummyHead->next;
delete dummyHead;
return ans;
}
};
6.从链表中移除结点
对于列表中的每个节点 node ,如果其右侧存在一个具有严格更大值的节点,则移除 node。
提示:删除后应该是个单调非递增序列,每个结点的值都大于等于下一个结点的值。
- 方法一:递归操作
class Solution {
public:
ListNode* removeNodes(ListNode* head) {
if (head->next == nullptr) {
return head;
}
ListNode* tmp = removeNodes(head->next); // tmp链表已是单调非递增序列
// 比较head和tmp的值,head需要大于等于tmp才符合要求,否则将head删除
if (head->val < tmp->val) {
return tmp; // 删除head
}
head->next = tmp; // head符合要求,加入到链表
return head;
}
};
- 方法二:反转思想。
容易推断最后一个结点一定是保留的,因为它后面不存在比它大的结点了,那么可以考虑将链表进行反转,从反转后的第一个结点开始,保留可以构成单调非递减序列的结点(后一个结点要大于等于前一个结点)。最后再将得到的链表反转一次就是结果了。
为什么需要逆序操作呢?因为可以确定最后一个结点一定保留,所以逆序只需要时间复杂度O(n)和空间复杂度O(1);正序若不借助额外空间,则需要两重循环遍历才能完成。
class Solution {
public:
ListNode* reverseList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* newHead = reverseList(head->next);
head->next->next = head;
head->next = nullptr;
return newHead;
}
ListNode* removeNodes(ListNode* head) {
head = reverseList(head);
ListNode* p = head;
int preVal = head->val;
while (p->next != nullptr) {
// cout << preVal << " " << p->next->val << endl;
if (p->next->val < preVal) {
p->next = p->next->next; // 删除p->next结点
} else {
preVal = p->next->val;
p = p->next;
}
}
return reverseList(head);
}
};
7.删除链表的中间结点
删除第 ⌊n / 2⌋ 个节点(链表长度为n,下标从 0 开始)
⌊x⌋ 表示小于或等于 x 的最大整数。例如n=7,则删除下标为⌊7 / 2⌋ = 3的结点,也就是第4个结点。
当链表有奇数个结点时,删除中间的:
当链表有偶数个结点时,删除中间靠右的:
- 考虑使用快慢指针。从哑巴结点同时出发,快指针每次走两个结点,慢指针每次走一个结点,当快指针的下个结点或者下下个结点为nullptr时,慢指针刚好走到中间结点的前驱结点位置。
class Solution {
public:
ListNode* deleteMiddle(ListNode* head) {
ListNode* dummyHead = new ListNode(-1, head);
if (head->next == nullptr) {
return nullptr;
}
ListNode* fast = dummyHead;
ListNode* slow = dummyHead;
ListNode* pre = dummyHead;
while (fast->next != nullptr && fast->next->next != nullptr) {
fast = fast->next->next;
slow = slow->next;
}
slow->next = slow->next->next;
ListNode* res = dummyHead->next;
delete dummyHead;
return res;
}
};
8.从链表中删除总和值为零的连续节点
- 前缀和思想:记前缀和
s[n]
为前n个结点的值之和。假设0<i<j,则s[j] = s[i] + 连续区间(i,j]中结点的总和
。若s[i]=s[j]
,则说明连续区间(i,j]中结点的总和为0。
首先遍历一遍链表,记录每个前缀和最后出现的位置;第二遍遍历,如果发现当前结点i
的前缀和记录的位置是j
,则说明现了相同的前缀和,且这两个位置i
和j
之间的结点的值的总和是0,将这(i,j]
的结点全部删除即可。
注意:除了两个结点的前缀和相等外,还有一种情况可以说明存在连续节点总和是0,那就是某个节点的前缀和为0的情况,例如s[i]=0,即前i个结点总和为0。可以考虑在头结点前设置一个哑巴头结点,将其值设置为0,那么其前缀和也是0,这样就能删除前i个结点了。
class Solution {
public:
ListNode* removeZeroSumSublists(ListNode* head) {
ListNode* dummyHead = new ListNode(0, head);
// 第一遍遍历获取前缀和最后出现的结点位置
unordered_map<int, ListNode*> last;
ListNode* p = dummyHead;
int sum = 0;
while (p != nullptr) {
sum += p->val;
last[sum] = p;
p = p->next;
}
// 第二遍遍历删除相同前缀和之间的结点
p = dummyHead;
sum = 0;
while (p != nullptr) {
sum += p->val;
if (last[sum] != p) {
// 删除(i,j]中的结点
p->next = last[sum]->next;
}
p = p->next;
}
return dummyHead->next;
}
};
9.删除链表中的结点
给定的是待删除的结点
- 由于是单链表,无法访问该节点的前驱结点,因此只能将当前结点置为后置结点的值,然后删除后置结点。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
void deleteNode(ListNode* node) {
node->val = node->next->val;
node->next = node->next->next;
}
};
三、链表排序
1.单链表排序
- 常用的链表排序方法有堆排序、归并排序
- 堆排序:时间复杂度o(nlogn)、空间复杂度o(n)
- 归并排序:
- 自顶向下排序: 时间复杂度o(nlogn)、空间复杂度o(logn)
- 自底向上排序: 时间复杂度o(nlogn)、空间复杂度o(1)
- 采用自底向上归并,可以把递归调用改为迭代,不使用额外空间。
- 方法一:堆排序
class Solution {
public:
static bool cmp(ListNode* a, ListNode* b) {
return a->val > b->val;
}
ListNode* sortList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
priority_queue<ListNode*, vector<ListNode*>, decltype(&cmp)> heap(cmp); // 构造最小堆
while (head != nullptr) {
heap.push(head);
head = head->next;
}
ListNode* dummyHead = new ListNode(-1);
ListNode* p = dummyHead;
while (!heap.empty()) {
p->next = heap.top();
heap.pop();
p = p->next;
}
p->next = nullptr;
return dummyHead->next;
}
};
- 方法二:自顶向下的归并排序(递归实现)
- 步骤1:将链表从中间拆分成两个链表(使用快慢指针找中间结点)
- 步骤2:将两个链表分别进行排序(调用递归sortList)
- 步骤3:合并两个有序链表(merge)
class Solution {
public:
ListNode* sortList(ListNode* head) {
if (head == nullptr || head->next == nullptr) { // 空节点或单个节点不需要排序
return head;
}
// 从中间将链表拆分成两部分分别进行排序,然后将两链表进行合并
ListNode* mid = getMidNode(head);
return merge(sortList(head), sortList(mid));
}
// 获取中间结点
ListNode* getMidNode(ListNode* head) {
ListNode* fast = head->next; // 相当于都从哑巴节点出发,快指针先走两步到head->next,慢指针走一步到head
ListNode* slow = head;
while (fast && fast->next) {
fast = fast->next->next;
slow = slow->next;
}
ListNode* mid = slow->next;
slow->next = nullptr; // 需要将前一段链表末尾置空
return mid;
}
// 合并两个有序链表head1和head2为一个有序链表
ListNode* merge(ListNode* head1, ListNode* head2) {
// cout << head1->val << " " << head2->val << endl;
ListNode* dummyHead = new ListNode(-1);
ListNode* p = dummyHead;
ListNode* p1 = head1;
ListNode* p2 = head2;
while (p1 && p2) {
if (p1->val < p2->val) {
p->next = p1;
p1 = p1->next;
} else {
p->next = p2;
p2 = p2->next;
}
p = p->next;
}
p->next = p1 ? p1 : p2;
return dummyHead->next;
}
};
- 方法三:自底向上的归并排序(迭代实现)
2.合并k个升序单链表
给定一个链表数组,每个链表都已经按升序排列。将所有链表合并成一个排序链表。
- 方法一:朴素的方法——先将链表1和链表2合并,然后合并后的链表和链表3合并,以此类推。
class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
if (lists.empty()) {
return nullptr;
}
ListNode* res = lists[0];
for (int i = 1; i < lists.size(); ++i) {
res = merge2Lists(lists[i], res);
}
return res;
}
ListNode* merge2Lists(ListNode* head1, ListNode* head2) {
ListNode* dummyHead = new ListNode(-1);
ListNode* p = dummyHead;
while (head1 && head2) {
if (head1->val < head2->val) {
p->next = head1;
head1 = head1->next;
} else {
p->next = head2;
head2 = head2->next;
}
p = p->next;
}
p->next = head1 ? head1 : head2;
return dummyHead->next;
}
};
- 方法二:最小堆。将链表放入最小堆(优先队列),自动实现排序。
class Solution {
public:
static bool cmp (ListNode* a, ListNode* b) {
return a->val > b->val;
}
ListNode* mergeKLists(vector<ListNode*>& lists) {
priority_queue<ListNode*, vector<ListNode*>, decltype(&cmp)> heap(cmp);
for (ListNode* p : lists) {
while (p) {
heap.push(p);
p = p->next;
}
}
ListNode* dummyHead = new ListNode(0);
ListNode* p = dummyHead;
while (!heap.empty()) {
p->next = heap.top();
cout << heap.top()->val << endl;
heap.pop();
p = p->next;
}
p->next = nullptr; // *最后一定要置空
return dummyHead->next;
}
};
- 方法三:归并排序
3.重排单链表
给定一个单链表 L 的头节点 head ,单链表 L 表示为:
```
L0 → L1 → … → Ln - 1 → Ln
```
请将其重新排列后变为:
```
L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → …
```
- 将链表从中间分成两条链表,然后后半链表反转,再将两条链表进行合并。
class Solution {
public:
void reorderList(ListNode* head) {
if (!head || !head->next) {
return;
}
ListNode* second = reverseList(splitFromMid(head));
merge(head, second);
}
ListNode* splitFromMid(ListNode* head) {
ListNode* fast = head->next;
ListNode* slow = head;
while (fast && fast->next) {
fast = fast->next->next;
slow = slow->next;
}
ListNode* mid = slow->next;
slow->next = nullptr;
return mid;
}
ListNode* reverseList(ListNode* head) {
if (!head || !head->next) {
return head;
}
ListNode* newHead = reverseList(head->next);
head->next->next = head;
head->next = nullptr;
return newHead;
}
void merge(ListNode* head1, ListNode* head2) {
ListNode* tmp;
while (head1 && head2) {
tmp = head2;
head2 = head2->next;
tmp->next = head1->next;
head1->next = tmp;
head1 = tmp->next;
}
}
};
4.排序的循环链表
给定循环单调非递减列表中的一个点,写一个函数向这个列表中插入一个新元素 insertVal ,使这个列表仍然是循环升序的
class Solution {
public:
Node* insert(Node* head, int insertVal) {
if (head == nullptr) {
Node* node = new Node(insertVal);
node->next = node;
return node;
}
Node* p = head;
bool begin = true;
bool insert = false;
while (p != head || begin) {
if ((p->next->val < p->val && p->next->val > insertVal) || // 插入一个最小值
(p->next->val < p->val && p->val < insertVal) || // 插入一个最大值
(p->val <= insertVal && p->next->val >= insertVal)) { // 插入一个中间值
Node* node = new Node(insertVal);
node->next = p->next;
p->next = node;
insert = true;
break;
}
p = p->next;
begin = false;
}
// 整个循环链表的值都相同
if (!insert) {
Node* node = new Node(insertVal);
node->next = p->next;
p->next = node;
}
return head;
}
};
5.对单链表进行插入排序
插入排序算法的步骤:
1. 插入排序是迭代的,每次只移动一个元素,直到所有元素可以形成一个有序的输出列表。
2. 每次迭代中,插入排序只从输入数据中移除一个待排序的元素,找到它在序列中适当的位置,并将其插入。
3. 重复直到所有输入数据插入完为止。
class Solution {
public:
ListNode* insertionSortList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* pre = new ListNode(5001, head); // 头结点前新增一个最大结点,保证该节点每次都在已排序链表的末尾
ListNode* dummyHead = new ListNode(0, pre);
ListNode* p = dummyHead;
ListNode* curr = head; // 待排序节点
ListNode* next = curr->next;
while (curr != nullptr) {
next = curr->next;
// p指向已排序链表中第一个值大于curr结点的前驱结点
while (p != curr && p->next->val <= curr->val) {
p = p->next;
}
// 将curr插入到p节点后
curr->next = p->next;
pre->next = next;
p->next = curr;
// 节点更新
curr = next;
p = dummyHead;
}
deleteNode(dummyHead->next, pre);
return dummyHead->next;
}
void deleteNode(ListNode* head, ListNode* node) {
ListNode* p = head;
while (p->next != node) {
p = p->next;
}
p->next = p->next->next;
delete node;
}
};
四、回文链表
如果一个链表是回文,那么链表节点序列从前往后看和从后往前看是相同的。
1.判断回文链表
- 回文链表一定是对称的,所以从中间结点分割链表,然后将后面的链表反转,再比较两条链表是否一致。
class Solution {
public:
bool isPalindrome(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return true;
}
if (head->next->next == nullptr) {
return head->val == head->next->val;
}
ListNode* second = reverseList(splitFromMid(head));
while (head && second) {
if (head->val != second->val) {
return false;
}
head = head->next;
second = second->next;
}
return true;
}
ListNode* splitFromMid(ListNode* head) {
ListNode* fast = head->next; // fast和slow别写放反
ListNode* slow = head;
while (fast && fast->next) {
fast = fast->next->next;
slow = slow->next;
}
ListNode* mid = slow->next;
slow->next = nullptr;
return mid;
}
ListNode* reverseList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* newHead = reverseList(head->next);
head->next->next = head;
head->next = nullptr;
return newHead;
}
};
五、环形链表
1.判断环形链表:判断链表中是否存在环,如图:链表尾部结点连接到了链表中间结点。
- 使用快慢指针判断链表中是否存在环。快指针每次走两步,慢指针每次走一步。当快慢指针都再环中移动时,由于快指针速度快,所以快指针一定能追上慢指针,也就是快慢指针相遇则说明存在环。
当两个指针都进入环后,每轮移动使得慢指针到快指针的距离增加一,同时快指针到慢指针的距离也减少一,只要一直移动下去,快指针总会追上慢指针。
如果链表存在环,则链表末尾不存在nullptr.
class Solution {
public:
bool hasCycle(ListNode *head) {
if (head == nullptr || head->next == nullptr) {
return false;
}
ListNode* fast = head->next;
ListNode* slow = head;
while (fast && fast->next) {
fast = fast->next->next;
slow = slow->next;
if (fast == slow) {
return true;
}
}
return false;
}
};
2.环形链表II:返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
- 仍然使用快慢指针,快指针每次走两步,慢指针每次走一步。
- 如图:假设头结点到入环点的距离为a步,慢指针在环内走了b步后两指针相遇(假设在快指针在环内走了n圈),相遇点继续走到入环点距离为c步。
- 可知快慢指针相遇时,慢指针走了
a+b
步,快指针走了a+b+n(b+c)
步,由于快指针速度是慢指针的两倍,所以快指针走的步数一定是慢指针的两倍,解方程a+b=a+n(b+c)+b
可得a=n(b+c)-b=(n-1)(b+c)+c
。 - 这个方程说明当一个指针从头结点出发,同时慢指针从相遇点出发,他们第一次相遇一定会在入环点。
- 注意fast和slow都从head结点出发,这里统计的是步数,如果两者从dummyHead出发(即fast先走到head->next,slow走到head),那么结论就不正确了。
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
if (head == nullptr || head->next == nullptr) {
return nullptr;
}
ListNode* fast = head; // *注意不是head->next
ListNode* slow = head;
while (fast && fast->next) {
fast = fast->next->next;
slow = slow->next;
if (fast == slow) {
cout << fast->val << endl;
ListNode* p = head;
while (p != slow) {
p = p->next;
slow = slow->next;
}
return p;
}
}
return nullptr;
}
};
六、获取链表结点
1.返回倒数第k个节点
- 快慢指针
class Solution {
public:
int kthToLast(ListNode* head, int k) {
ListNode* fast = head;
int num = k;
while (num--) {
fast = fast->next;
}
ListNode* slow = head;
while (fast) {
fast = fast->next;
slow = slow->next;
}
return slow->val;
}
};
- 返回链表中倒数第k个结点
- 同上,这里返回结点。
class Solution {
public:
ListNode* getKthFromEnd(ListNode* head, int k) {
ListNode* fast = head;
int num = k;
while (num--) {
fast = fast->next;
}
ListNode* slow = head;
while (fast) {
fast = fast->next;
slow = slow->next;
}
return slow;
}
};
- 链表的中间节点 :给你单链表的头结点 head ,请你找出并返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点。
class Solution {
public:
ListNode* middleNode(ListNode* head) {
ListNode* fast = head;
ListNode* slow = head;
while (fast && fast->next) {
fast = fast->next->next;
slow = slow->next;
}
return slow;
}
};
- 链表随机结点
class Solution {
public:
Solution(ListNode* head) {
while (head) {
arr.push_back(head->val);
head = head->next;
}
}
int getRandom() {
return arr[rand() % arr.size()];
}
private:
vector<int> arr;
};
5.交换链表节点
交换 链表正数第 k 个节点和倒数第 k 个节点的值后,返回链表的头节点(链表 从 1 开始索引)。
- 交换结点的值即可,无需交换结点。
class Solution {
public:
ListNode* swapNodes(ListNode* head, int k) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* kNode = head;
for (int i = 1; i < k; ++i) {
kNode = kNode->next;
}
ListNode* lastKNode = findLastKNode(head, k);
int tmp = kNode->val;
kNode->val = lastKNode->val;
lastKNode->val = tmp;
return head;
}
ListNode* findLastKNode(ListNode* head, int k) {
ListNode* fast = head;
for (int i = 1; i <= k; ++i) {
fast = fast->next;
}
ListNode* slow = head;
while (fast) {
fast = fast->next;
slow = slow->next;
}
return slow;
}
};
七、链表相交
- 两个链表的第一个重合节点:如图c1为第一个重合节点,若没有重合节点返回nullptr。
- 方法一:哈希表。判断两个链表是否相交,可以使用哈希集合存储链表节点。首先遍历链表1,并将链表1中的每个节点加入哈希集合中。然后遍历链表2对于遍历到的每个节点,判断该节点是否在哈希集合中。
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
unordered_set<ListNode*> nodeSet;
while (headA) {
nodeSet.insert(headA);
headA = headA->next;
}
while (headB) {
if (nodeSet.find(headB) != nodeSet.end()) {
return headB;
}
headB = headB->next;
}
return nullptr;
}
};
- 方法二:双指针。两个指针分别从两个链表头结点出发,当指针走到链表结尾时下一步就到另一条链表的头结点开始遍历。假设链表1在相交前长
a
,链表2在相交前长b
,相交部分长度为c
。两个指针在走完自身链表后又分别走了对方链表不相交的部分,即两个指针都在走了a+b+c
的距离时刚好相交点相遇。如果两个链表不相交,则它们会同时指向nullptr。
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
ListNode* pA = headA;
ListNode* pB = headB;
while (pA != pB) {
pA = pA ? pA->next : headB;
pB = pB ? pB->next : headA;
}
return pA;
}
};
八、链表合并
- 合并零之间的结点
class Solution {
public:
ListNode* mergeNodes(ListNode* head) {
ListNode* dummyHead = new ListNode(-1);
ListNode* p = dummyHead;
int tmp = 0;
head = head->next;
while (head != nullptr) {
if (head->val != 0) {
tmp += head->val;
} else {
ListNode* node = new ListNode(tmp);
p->next = node;
p = p->next;
tmp = 0;
}
head = head->next;
}
return dummyHead->next;
}
};
- 合并两个链表
class Solution {
public:
ListNode* mergeInBetween(ListNode* list1, int a, int b, ListNode* list2) {
ListNode* dummyHead = new ListNode(-1, list1);
// 找到a前驱节点
ListNode* pre = dummyHead;
for (int i = 0; i < a; ++i) {
pre = pre->next;
}
//找到b后继结点
ListNode* next = pre->next;
for (int i = a; i <= b; ++i) {
next = next->next;
}
// 合并
pre->next = list2;
while (list2->next) {
list2 = list2->next;
}
list2->next = next;
return dummyHead->next;
}
};
九、链表的计算
1.两数相加II
给你两个 非空 链表来代表两个非负整数。数字最高位位于链表开始位置。它们的每个节点只存储一位数字。将这两数相加会返回一个新的链表。
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
l1 = reverseList(l1);
l2 = reverseList(l2);
ListNode* res = new ListNode(0);
ListNode* p = res;
int c = 0;
while (l1 && l2) {
ListNode* node = new ListNode((c + l1->val + l2->val) % 10);
c = (c + l1->val + l2->val) / 10;
p->next = node;
p = p->next;
l1 = l1->next;
l2 = l2->next;
}
p->next = l1 ? l1 : l2;
while (l1) {
int v = l1->val;
l1->val = (v + c) % 10;
c = (v + c) / 10;
l1 = l1->next;
p = p->next;
}
while (l2) {
int v = l2->val;
l2->val = (v + c) % 10;
c = (v + c) / 10;
l2 = l2->next;
p = p->next;
}
if (c != 0) {
ListNode* node = new ListNode(c);
p->next = node;
node->next = nullptr;
}
return reverseList(res->next);
}
ListNode* reverseList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* newHead = reverseList(head->next);
head->next->next = head;
head->next = nullptr;
return newHead;
}
};
3.链表最大孪生和
- 链表拆分+链表反转
class Solution {
public:
int pairSum(ListNode* head) {
ListNode* mid = reverseList(split(head));
int maxSum = 0;
while (head && mid) {
maxSum = max(maxSum, head->val + mid->val);
head = head->next;
mid = mid->next;
}
return maxSum;
}
ListNode* split(ListNode* head) {
ListNode* fast = head->next;
ListNode* slow = head;
while (fast && fast->next) {
fast = fast->next->next;
slow = slow->next;
}
ListNode* mid = slow->next;
slow->next = nullptr;
return mid;
}
ListNode* reverseList(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* newHead = reverseList(head->next);
head->next->next = head;
head->next = nullptr;
return newHead;
}
};
4.二进制链表转整数
- 二进制转换方式:
- 虽然每一位乘以2的次方数与位数有关,但是不必知道总位数(链表长度),只需要每次将当前结点当做是最低位数(即当前节点值乘以2的0次方),然后在读到下一个节点值的时候,将已经读到的结果乘以2即可(是一样的结果)。
class Solution {
public:
int getDecimalValue(ListNode* head) {
int res = 0;
int num = 0;
while (head) {
res = res * 2 + head->val;
head = head->next;
}
return res;
}
};
十、分割链表
1.分割链表
给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。
class Solution {
public:
ListNode* partition(ListNode* head, int x) {
if (head == nullptr || head->next == nullptr) {
return head;
}
ListNode* dummyHead = new ListNode(-1, head);
ListNode* pre = dummyHead;
ListNode* curr = dummyHead;
while (curr && curr->next) {
if (curr->next->val < x && pre != curr) {
// 将curr->next插入到pre后面
ListNode* next = curr->next->next;
curr->next->next = pre->next;
pre->next = curr->next;
curr->next = next;
// 更新节点
pre = pre->next;
} else {
curr = curr->next;
}
}
return dummyHead->next;
}
};
2.分隔链表
给你一个头结点为 head 的单链表和一个整数 k ,请你设计一个算法将链表分隔为 k 个连续的部分。每部分的长度应该尽可能的相等:任意两部分的长度差距不能超过 1 。这可能会导致有些部分为 null 。这 k 个部分应该按照在链表中出现的顺序排列,并且排在前面的部分的长度应该大于或等于排在后面的长度。
返回一个由上述 k 部分组成的数组。
- 穿针引线
class Solution {
public:
ListNode* oddEvenList(ListNode* head) {
ListNode* pre = head;
ListNode* curr = head;
ListNode* next;
int num = 2;
while (curr && curr->next) {
if (num % 2 == 1) {
// curr->next结点放到pre节点后
next = curr->next->next;
curr->next->next = pre->next;
pre->next = curr->next;
curr->next = next;
// 更新节点
curr = next;
pre = pre->next;
// curr移动到next,移动了两个结点
num += 2;
} else {
curr = curr->next;
num += 1;
}
}
return head;
}
};
链表与二叉树
1.BiNode
二叉树数据结构TreeNode可用来表示单向链表(其中left置空,right为下一个链表节点)。实现一个方法,把二叉搜索树转换为单向链表,要求依然符合二叉搜索树的性质,转换操作应是原址的,也就是在原始的二叉搜索树上直接修改。
返回转换后的单向链表的头节点。
- 可以通过中序遍历获得从小到大顺序的二叉搜索树结点。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* convertBiNode(TreeNode* root) {
inOrder(root);
return head->right;
}
void inOrder(TreeNode* root) {
if (root == nullptr) {
return;
}
inOrder(root->left);
pre->right = root;
root->left = nullptr;
pre = root;
inOrder(root->right);
}
private:
TreeNode* head = new TreeNode(-1);
TreeNode* pre = head;
};
2.特定深度结点链表
给定一棵二叉树,设计一个算法,创建含有某一深度上所有节点的链表(比如,若一棵树的深度为 D,则会创建出 D 个链表)。返回一个包含所有深度的链表的数组。
- 利用队列进行层序遍历。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
vector<ListNode*> listOfDepth(TreeNode* tree) {
if (tree == nullptr) {
return {};
}
vector<ListNode*> res;
res.push_back(new ListNode(tree->val));
queue<TreeNode*> q;
q.push(tree);
while (!q.empty()) {
ListNode* dummyHead = new ListNode(-1);
ListNode* p = dummyHead;
int len = q.size();
while (len--) {
auto top = q.front();
q.pop();
if (top->left) {
p->next = new ListNode(top->left->val);
p = p->next;
q.push(top->left);
}
if (top->right) {
p->next = new ListNode(top->right->val);
p = p->next;
q.push(top->right);
}
}
p->next = nullptr;
if (dummyHead->next) {
res.push_back(dummyHead->next);
}
}
return res;
}
};
3.二叉树中的链表
- 两个递归。一个枚举起点,一个用于判断从该起点出发能否匹配链表。
Solution {
public:
bool isSubPath(ListNode* head, TreeNode* root) {
if (root == nullptr) {
return false;
}
return dfs(head, root) || isSubPath(head, root->left) || isSubPath(head, root->right); // 枚举起点
}
bool dfs(ListNode* head, TreeNode* root) {
if (head == nullptr) {
return true;
}
if (root == nullptr) {
return false;
}
if (head->val != root->val) {
return false;
}
return dfs(head->next, root->left) || dfs(head->next, root->right);
}
};
4.填充每个结点的下一个右侧节点指针
- 中序遍历
class Solution {
public:
Node* connect(Node* root) {
if (root == nullptr) {
return root;
}
queue<Node*> q;
q.push(root);
Node* dummyHead = new Node(-1);
Node* p = dummyHead;
while (!q.empty()) {
p = dummyHead;
int len = q.size();
while (len--) {
Node* top = q.front();
q.pop();
if (top->left) {
p->next = top->left;
p = p->next;
q.push(top->left);
}
if (top->right) {
p->next = top->right;
p = p->next;
q.push(top->right);
}
}
}
delete dummyHead;
return root;
}
};
5.二叉树展开为链表
- 用先序遍历。由于将二叉树展开为链表之后会破坏二叉树的结构,因此在前序遍历过程中记录顺序,遍历完成后再更新左右结点指针的信息。
class Solution {
public:
void flatten(TreeNode* root) {
if (root == nullptr) {
return;
}
vector<TreeNode*> orderList;
preOrder(root, orderList);
for (int i = 1; i < orderList.size(); ++i) {
root->right = orderList[i];
root->left = nullptr;
root = root->right;
}
}
// 先序遍历:根->左->右
void preOrder(TreeNode* root, vector<TreeNode*>& orderList) {
if (root == nullptr) {
return;
}
orderList.push_back(root);
preOrder(root->left, orderList);
preOrder(root->right, orderList);
}
};
6.有序链表转化平衡二叉搜索树
通过链表解题
1.使数组按非递减顺序排列——链表+单调栈
链表的复制
1.复杂链表的复制
- 因为复杂链表包含一个随机指针,在创建当前节点时,该随机指针指向的节点不一定创建好了。所以可以构造新旧链表结点之间的映射
mp
,mp[newNode]=oldNode
,mp[oldNode]=newNode
,第一次遍历旧链表构造新节点(包括val和next指针)以及映射;第二次遍历新链表,通过mp[mp[newNode]->random]
获取到该结点的随机指针应该指向的另一个新节点。
/*
// Definition for a Node.
class Node {
public:
int val;
Node* next;
Node* random;
Node(int _val) {
val = _val;
next = NULL;
random = NULL;
}
};
*/
class Solution {
public:
Node* copyRandomList(Node* head) {
// 构建新旧链表节点之间的哈希映射
unordered_map<Node*, Node*> mp;
Node* newList = new Node(-1);
Node* p = head;
Node* q = newList;
while (p) {
// 建立新链表
Node* node = new Node(p->val);
q->next = node;
q = q->next;
// 构建映射
mp[p] = node;
mp[node] = p;
p = p->next;
}
q->next = nullptr;
q = newList->next;
while (q) {
q->random = mp[mp[q]->random];
q = q->next;
}
return newList->next;
}
};
双向链表
1.扁平化多级双向链表
- 递归处理
/*
// Definition for a Node.
class Node {
public:
int val;
Node* prev;
Node* next;
Node* child;
};
*/
class Solution {
public:
Node* flatten(Node* head) {
if (head == nullptr) {
return head;
}
dfs(head);
return head;
}
Node* dfs(Node* head) {
if (head->child == nullptr && head->next == nullptr) {
return head;
}
if (head->child) {
Node* next = head->next;
head->next = head->child;
head->child->prev = head;
Node* tail = dfs(head->child);
head->child = nullptr;
tail->next = next;
if (next) {
next->prev = tail;
}
}
return dfs(head->next);
}
};
2.二叉搜索树与双向循环链表
- 中序遍历
class Solution {
public:
Node* treeToDoublyList(Node* root) {
if (root == nullptr) {
return root;
}
inOrder(root);
pre->right = dummyHead->right;
dummyHead->right->left = pre;
return dummyHead->right;
}
// 中序遍历:左->根->右
void inOrder(Node* root) {
if (root == nullptr) {
return;
}
inOrder(root->left);
pre->right = root;
root->left = pre;
pre = root;
inOrder(root->right);
}
private:
Node* dummyHead = new Node(-1);
Node* pre = dummyHead;
};
链表设计题
1.设计哈希集合
2.LRU缓存
题意: 实现LRU:Least Recent Used,即最近最少使用算法。
- get函数:如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
- push函数:如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
- 函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
解题思路:
由于get和put操作设计查找和插入,两者都需要满足O(1)的时间复杂度,因此可以通过哈希表+双向链表实现。
- 哈希表——存储key和链表结点的映射。实现由key到value的快速查找,复杂度o(1)。
- 双向链表——存储每个结点的最近访问顺序,结点保存key和value信息,结点的顺序就是最近有访问的排在前面,最后的结点是最近最久未访问的结点。实现快速插入删除结点。
- 算法思想
- 每次get时,判断key值在哈希表中是否存在
- 若不存在,返回-1;
- 若存在,首先将该结点移动至链表前面,然后通过哈希访问该节点的值。
- 每次put时,判断key值在哈希表中是否存在
- 若存在,将该节点移动之链表前面,并通过哈希访问该节点更新value的值。
- 若不存在,则新建一个key结点,并插入到队列前面,同时建立哈希映射关系。如果插入该节点后,结点数超过容量,则需要将链表的最后一个节点移除,同时删除其哈希映射关系。
- 具体实现
- 定义双向链表:节点要包含key,value,prev指针和next指针。
(不能只有value,还必须包含key,因为删除最后一个节点的哈希映射关系时需要用到key) - 定义双向链表头指针head——方便插入操作;尾指针tail——方便删除操作。
// 双向链表
struct DListNode {
int key;
int val;
DListNode* prev;
DListNode* next;
DListNode() : key(0), val(0), prev(nullptr), next(nullptr) {}
DListNode(int key_, int val_) : key(key_), val(val_), prev(nullptr), next(nullptr) {}
};
class LRUCache {
public:
LRUCache(int capacity) {
this->capacity = capacity;
head->next = tail;
tail->prev = head;
}
int get(int key) {
if (mp.count(key) == 0) {
return -1;
}
// 将访问的该节点移动到头部
removeToHead(mp[key]);
return mp[key]->val;
}
void put(int key, int value) {
if (!mp.count(key)) {
// 新建节点插入到链表头部
DListNode* node = insertToHead(key, value);
mp[key] = node;
++size;
if (size > capacity) {
// 移除最近最久未使用的结点
node = removeLastNode();
mp.erase(node->key);
--size;
}
} else {
mp[key]->val = value;
removeToHead(mp[key]); // 因为访问了该结点,所以移动到链表头部
}
}
protected:
// 插入节点到链表头部
DListNode* insertToHead(int key, int val) {
DListNode* node = new DListNode(key, val);
node->next = head->next;
head->next = node;
node->prev = head;
node->next->prev = node;
return node;
}
// 逐出最近最久未使用的节点(即链表的最后一个节点)
DListNode* removeLastNode() {
DListNode* node = tail->prev;
node->prev->next = tail;
tail->prev = node->prev;
return node;
}
// 将某结点移动到链表头部
void removeToHead(DListNode* node) {
// 将node前后结点进行连接
node->prev->next = node->next;
node->next->prev = node->prev;
// 将node插入head之后
node->next = head->next;
head->next = node;
node->prev = head;
node->next->prev = node;
}
private:
int capacity {0};
int size {0};
unordered_map<int, DListNode*> mp;
DListNode* head = new DListNode(); // 双向链表头结点
DListNode* tail = new DListNode(); // 双向链表尾节点
};
另外,打印输出也会占用时间诶,看来不能瞎搞QaQ
3.LFU缓存
最不经常使用(LFU)算法和 最近最久未使用(LRU)算法, 都是内存管理的页面置换算法,它们的区别是:
- LRU,即:最近最少使用淘汰算法(Least Recently Used)。LRU是淘汰最长时间没有被使用的页面。
LRU关键是看数据最后一次被使用到发生替换的时间长短,时间越长,数据就会被置换; - LFU,即:最不经常使用淘汰算法(Least Frequently Used)。LFU是淘汰一段时间内,使用次数最少的页面。
LFU关键是看一定时间段内页面被使用的频率(次数),使用频率越低,数据就会被置换。
解题思路:
- 为了确定最不常使用的键,可以为缓存中的每个键维护一个使用计数器
cnt
。使用计数最小的键是最久未使用的键。当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。
4.设计浏览器缓存
- 双向链表实现。curr指针指向当前访问的页面,每次visit在链表后面增加接地那,back时链表通过prev指针遍历,forward时链表通过next指针遍历。
struct DListNode {
string url;
DListNode* prev;
DListNode* next;
DListNode() : url(""), prev(nullptr), next(nullptr) {}
DListNode(string url_) : url(url_), prev(nullptr), next(nullptr) {}
};
class BrowserHistory {
public:
BrowserHistory(string homepage) {
head->url = homepage;
}
void visit(string url) {
DListNode* node = new DListNode(url);
curr->next = node;
node->prev = curr;
curr = node;
}
string back(int steps) {
while (curr->prev && steps--) {
curr = curr->prev;
}
return curr->url;
}
string forward(int steps) {
while (curr->next && steps--) {
curr = curr->next;
}
return curr->url;
}
private:
DListNode* head = new DListNode();
DListNode* curr = head;
};
5.设计循环队列
- 链表实现。定义头指针head和尾指针tail,这里两者是链表真正的头结点和尾节点,初始head和tail都置空。
- 队列需满足先入先出条件,所以从尾部插入结点,从头部删除结点。
- 使用size和capacity判断是否为空和是否满队列
class MyCircularQueue {
public:
MyCircularQueue(int k) {
capacity = k;
head = tail = nullptr;
}
bool enQueue(int value) {
if (isFull()) {
return false;
}
ListNode* node = new ListNode(value);
if (head) {
// 从尾部插入
tail->next = node;
tail = node;
} else {
head = tail = node;
}
++size;
return true;
}
bool deQueue() {
if (isEmpty()) {
return false;
}
// 从头部删除
ListNode* node = head;
head = head->next;
delete node;
--size;
return true;
}
int Front() {
return isEmpty() ? -1 : head->val;
}
int Rear() {
return isEmpty() ? -1 : tail->val;
}
bool isEmpty() {
return size == 0;
}
bool isFull() {
return size == capacity;
}
private:
int size {0};
int capacity {0};
ListNode* head;
ListNode* tail;
};
6.设计循环双端队列
- 双向链表实现
struct DListNode {
int val;
DListNode* prev;
DListNode* next;
DListNode() : val(0), prev(nullptr), next(nullptr) {}
DListNode(int val_) : val(val_), prev(nullptr), next(nullptr) {}
};
class MyCircularDeque {
public:
MyCircularDeque(int k) {
capacity = k;
head->next = tail;
tail->prev = head;
}
bool insertFront(int value) {
if (size >= capacity) {
return false;
}
// head前面添加node节点,head的值置为value,head前移一位
DListNode* node = new DListNode();
node->next = head;
head->prev = node;
head->val = value;
head = head->prev;
++size;
return true;
}
bool insertLast(int value) {
if (size >= capacity) {
return false;
}
// tail后添加node节点,tail的值置为value,tail后移一位
DListNode* node = new DListNode();
tail->next = node;
node->prev = tail;
tail->val = value;
tail = tail->next;
++size;
return true;
}
bool deleteFront() {
if (size <= 0) {
return false;
}
DListNode* node = head->next;
head->next = node->next;
node->next->prev = head;
delete node;
--size;
return true;
}
bool deleteLast() {
if (size <= 0) {
return false;
}
DListNode* node = tail->prev;
node->prev->next = tail;
tail->prev = node->prev;
delete node;
--size;
return true;
}
int getFront() {
return size <= 0 ? -1 : head->next->val;
}
int getRear() {
return size <= 0 ? -1 : tail->prev->val;
}
bool isEmpty() {
return size == 0;
}
bool isFull() {
return size == capacity;
}
private:
DListNode* head = new DListNode();
DListNode* tail = new DListNode();
int capacity {0};
int size {0};
};
7.设计前中后队列
- 双向链表实现
struct DListNode {
int val;
DListNode* prev;
DListNode* next;
DListNode() : val(0), prev(nullptr), next(nullptr) {}
DListNode(int val_) : val(val_), prev(nullptr), next(nullptr) {}
};
class FrontMiddleBackQueue {
public:
FrontMiddleBackQueue() {
head->next = tail;
tail->prev = head;
}
void pushFront(int val) {
DListNode* node = new DListNode();
node->next = head;
head->prev = node;
head->val = val;
head = head->prev;
++size;
}
void pushMiddle(int val) {
DListNode* mid = getMidNode();
DListNode* node = new DListNode(val);
if (size % 2 == 1) { // 期数个结点在mid前插入
mid->prev->next = node;
node->prev = mid->prev;
node->next = mid;
mid->prev = node;
} else { // 偶数个结点在mid后插入
node->next = mid->next;
mid->next->prev = node;
mid->next = node;
node->prev = mid;
}
++size;
}
void pushBack(int val) {
DListNode* node = new DListNode();
tail->next = node;
node->prev = tail;
tail->val = val;
tail = tail->next;
++size;
}
int popFront() {
if (size <= 0) {
return -1;
}
int res = head->next->val;
DListNode* node = head->next;
head->next = node->next;
node->next->prev = head;
delete node;
--size;
return res;
}
int popMiddle() {
if (size <= 0) {
return -1;
}
DListNode* mid = getMidNode();
mid->prev->next = mid->next;
mid->next->prev = mid->prev;
int res = mid->val;
delete mid;
--size;
return res;
}
int popBack() {
if (size <= 0) {
return -1;
}
int res = tail->prev->val;
DListNode* node = tail->prev;
node->prev->next = tail;
tail->prev = node->prev;
delete node;
--size;
return res;
}
protected:
// 1 2 (3) 4 5
// 1 2 (3) 4 5 6
DListNode* getMidNode() {
DListNode* p = head;
for (int i = 1; i <= size / 2; ++i) {
p = p->next;
}
if (size % 2 == 1) {
p = p->next;
}
return p;
}
private:
int size {0};
DListNode* head = new DListNode();
DListNode* tail = new DListNode();
};
8.设计链表
- 使用head和tail指针作为虚拟头结点和尾节点,方便两端插入操作
class MyLinkedList {
public:
MyLinkedList() {
size = 0;
head = new ListNode();
tail = new ListNode();
head->next = tail;
}
int get(int index) {
if (index < 0 || index >= size) {
return -1;
}
ListNode* p = head;
for (int i = 0; i <= index; ++i) {
p = p->next;
}
return p->val;
}
void addAtHead(int val) {
ListNode* node = new ListNode(val);
node->next = head->next;
head->next = node;
++size;
}
void addAtTail(int val) {
tail->next = new ListNode();
tail->val = val;
tail = tail->next;
++size;
}
void addAtIndex(int index, int val) {
if (index > size) {
return;
}
// 找到index前一个节点
ListNode* pre = head;
for (int i = 0; i < index; ++i) {
pre = pre->next;
}
// 插入新节点
ListNode* node = new ListNode(val);
node->next = pre->next;
pre->next = node;
++size;
}
void deleteAtIndex(int index) {
if (index < 0 || index >= size) {
return;
}
ListNode* pre = head;
for (int i = 0; i < index; ++i) {
pre = pre->next;
}
ListNode* node = pre->next;
pre->next = node->next;
delete node;
--size;
}
private:
int size;
ListNode* head;
ListNode* tail;
};
9.设计推特
- 哈希表+链表+优先队列
class Twitter {
public:
Twitter() {
curTime = 0;
maxTweet = 10;
}
// 根据给定的 tweetId 和 userId 创建一条新推文
void postTweet(int userId, int tweetId) {
checkUser(userId);
TweetNode* t = new TweetNode(tweetId, curTime++);
t->next = userMap[userId]->tweets->next;
userMap[userId]->tweets->next = t;
}
// 检索当前用户新闻推送中最近10条推文的ID,按时间由近到远 (必须是自己和关注人的)
vector<int> getNewsFeed(int userId) {
checkUser(userId);
// 将userId自己以及所有关注的人的推特合并——使用优先队列(最小堆)
priority_queue<TweetNode*, vector<TweetNode*>, decltype(&cmp)> heap(cmp);
// 自己的博文放入堆中
TweetNode* t = userMap[userId]->tweets->next;
while (t) {
heap.push(t);
t = t->next;
}
// 关注的人的博文放入堆中
for (auto id : userMap[userId]->followIds) {
t = userMap[id]->tweets->next;
while (t) {
heap.push(t);
t = t->next;
}
}
// 取堆中前maxTweet条博文
vector<int> res;
int len = min(static_cast<int>(heap.size()), maxTweet);
for (unsigned int i = 0; i < len; ++i) {
res.push_back(heap.top()->tweetId);
heap.pop();
}
return res;
}
// userId1 的用户开始关注ID为 userId2 的用户
void follow(int userId1, int userId2) {
checkUser(userId1);
checkUser(userId2);
userMap[userId1]->followIds.insert(userId2);
}
// userId1 的用户取消关注ID为 userId2 的用户
void unfollow(int userId1, int userId2) {
checkUser(userId1);
checkUser(userId2);
userMap[userId1]->followIds.erase(userId2);
}
protected:
struct TweetNode {
int tweetId;
int time; // 发推时间
TweetNode* next;
TweetNode() : tweetId(-1), time(-1), next(nullptr) {}
TweetNode(int t1, int t2) : tweetId(t1), time(t2), next(nullptr) {}
};
struct User {
int userId;
unordered_set<int> followIds; // 该用户关注的人
TweetNode* tweets; // 该用户发的推特
User() : userId(-1) {
tweets = new TweetNode();
}
User(int userId_) : userId(userId_) {
tweets = new TweetNode();
}
};
// 新推文排在前面
static bool cmp(TweetNode* a, TweetNode*b) {
return a->time < b->time;
}
// 当用户不存在时创建用户
void checkUser(int userId) {
if (userMap[userId] == nullptr) {
userMap[userId] = new User(userId);
}
}
private:
int curTime; // 记录当前时间,值越大,推文越新
int maxTweet; // 最多推送的推特个数
unordered_map<int, User*> userMap; // 存储用户Id->用户信息
};
其它
1.链表组件
- 哈希表存储数组提高查找效率。
class Solution {
public:
int numComponents(ListNode* head, vector<int>& nums) {
unordered_set<int> st(nums.begin(), nums.end());
int exits = 0;
int res = 0;
while (head) {
if (st.count(head->val)) {
exits = 1;
} else {
res += exits;
exits = 0;
}
head = head->next;
}
return exits ? res + 1 : res;
}
};
[2.找出临界点之间的最小和最大距离]
class Solution {
public:
vector<int> nodesBetweenCriticalPoints(ListNode* head) {
if (!head || !head->next || !head->next->next) {
return {-1, -1};
}
int minn = INT_MAX;
int maxn = 0;
int lastPos = -1;
int pos = 2;
int cnt = 0;
while (head->next->next) {
ListNode* curr = head->next;
ListNode* next = curr->next;
if ((curr->val > head->val && curr->val > next->val) || (curr->val < head->val && curr->val < next->val)) {
minn = min(minn, lastPos == -1 ? INT_MAX : pos - lastPos);
maxn += lastPos == -1 ? 0 : (pos - lastPos);
lastPos = pos;
++cnt;
}
head = head->next;
++pos;
}
if (cnt < 2) {
return {-1, -1};
}
return {minn, maxn};
}
};