【雕爷学编程】MicroPython动手做(31)——物联网之Easy IoT 3

news2025/1/11 15:08:33

1、物联网的诞生
美国计算机巨头微软(Microsoft)创办人、世界首富比尔盖茨,在1995年出版的《未来之路》一书中,提及“物物互联”。1998年麻省理工学院提出,当时被称作EPC系统的物联网构想。2005年11月,国际电信联盟发布《ITU互联网报告2005:物联网》,正式提出物联网时代来临。
物联网(IoT)一词是由Kevin Ashton 于1999年在Proctor&Gamble的一次演讲中创造的 。他是麻省理工学院Auto-ID实验室的联合创始人。他率先将RFID(用于条形码检测器)用于供应链管理领域。他还创立了Zensi,一家生产能量传感和监测技术的公司。 所以,让我首先向您介绍Kevin Ashton的一句话,他在2009年为RFID期刊撰写了这篇文章。这将有助于您从核心理解物联网。

如果我们拥有能够了解所有事情的计算机 - 使用他们在没有我们任何帮助的情况下收集的数据 - 我们将能够跟踪和计算所有内容,并大大减少浪费,损失和成本。我们知道什么时候需要更换,修理或召回,以及它们是新鲜的还是过去的。 我们需要用他们自己的收集信息的方式赋予计算机权力,这样他们就可以随意地看到,听到和闻到这个世界。

上面凯Kevin的应用会让你了解物联网发展背后的意识形态。现在让我们尝试进一步简化这个术语,从根本上理解物联网。在此之后,我们将继续前进,并寻求物联网的好处。

在这里插入图片描述
2、什么是物联网?
大家在听到物联网时,脑海中会出现一个什么样的印象呢?物联网的英语是Internet of Things,缩写为IoT,这里的“物”指的是我们身边一切能与网络相连的物品。例如您身上穿着的衣服、戴着的 手表、家里的家用电器和汽车,或者是房屋本身,甚至正在读的这本书,只要能与网络相连,就都是物联网说的“物”。

物联网(Internet of Things,缩写IoT)是一个基于互联网、传统电信网等信息承载体,让所有能够被寻找网络联机的对象,实现互联互通的网络。就像我们用互联网在彼此之间传递信息一样,物联网就是“物”之间通过连接互联网来共享信息并产生有用的信息,而且无需人为管理就 能运行的机制。他们可以互相感知和沟通。现在想象一下,无生命的物体是否可以在没有任何人为干预的情况下感知并相互作用。听起来很神奇不是吗?

在这里插入图片描述
3. 物联网架构

目前物联网架构通常分为感知层、网络层和应用层三个层次,也有四层架构、五层架构和七层架构的分法,不过我们这里使用通常使用的三层架构进行说明。图示如下:

(1)感知层

与环境交互的传感器,执行器和边缘设备

感知层是物联网的皮肤和五官,用于识别物体、感知物体、采集信息、自动控制,比如装在空调上的温度传感器识别到了室内温度高于30度,把这个信息收集后,自动打开了空调进行制冷;这个层面涉及到的是各种识别技术、信息采集技术、控制技术。而且这些技术是交叉使用的的,各种感知有些是单一的,有些则是综合的,比如机器人就是整合了各种感知系统。 这一层最常见的就是各种传感器,用于替代或者延展人类的感官完成对物理世界的感知,也包括企业信息化过程中用到的RFID以及二维码技术。

(2) 网络层

通过网络并与应用层协调发现,连接和转换设备

网络层则主要实现信息的传递、路由(决定信息传递的途径)和控制(控制信息如何传递),分为两大部分, 一部分是物联网的通信技术,一部分是物联网的通讯协议,通讯技术负责把物与物从物理上链接起来,可以进行通信,通讯协议则负责建立通信的规则和统一格式。

物联网通讯协议和通讯技术一样的多,如MQTT、DDS、AMQP、XMPP、JMS、REST、CoAP、OPC UA。网络层就相当于人的大脑和神经中枢,主要负责传递和处理感知层获取的信息。

(3)应用层

为用户提供专业服务和功能的数据处理和存储

是在各种物联网通讯协议的支持下,对物联网形成的数据在宏观层面进行分析并反馈到感知层执行特定控制功能,包括控制物与物之间的协同,物与环境的自适应,人与物的协作。 应用层个人理解可分为两大部分,一部分是通用的物联网平台,建立在云平台之上,可以是IAAS/PASS/SAAS的一种或者混合。 目前已经有不少企业推出了物联网平台,比如树根互联、百度云天工、腾讯QQ物联智能硬件开放平台、阿里Link物联网平台、SAP Leonardo、亚马逊AWS、微软Azure、Google Cloud IoT Core。 另外一部分是在这个通用的物联网平台上再产生具体应用,这些应用类似于手机App,具体应用就是如何具体控制这些物如何收集信息,如何进行控制物。

这些具体应用场景包括:
个人应用:可穿戴设备、运动健身、健康、娱乐应用、体育、玩具、亲子、关爱老人;
智能家居:家庭自动化、智能路由、安全监控、智能厨房、家庭机器人、传感检测、智能宠物、智能花园、跟踪设备;
智能交通:车联网、智能自行车/摩托车(头盔设备)、无人驾驶、无人机、太空探索;
企业应用:医疗保健、零售、支付/信用卡、智能办公室、现代农业、建筑施工;
工业互联网:智能制造、能源工业、供应链、工业机器人、工业可穿戴设备(智能安全帽等);
从应用层面可以看出,物联网真的是可以无处不用,无处不在。物联网的最终目标是实现任何物体在任何时间、任何地点的链接,帮助人类对物理世界具有“全面的感知能力、透彻的认知能力和智慧的处理能力”。

在这里插入图片描述
4、Easy IoT是什么
Easy IoT是一个国际化物联网服务平台 http://iot.dfrobot.com.cn/,可以对联网的传感器/执行器数据进行实时监控和反馈,统计和分析已经接收的数据,并向传感器/执行器发送数据,帮助实现控制效果。

为什么用Easy IoT ——Easy IoT PC端和移动端

上手简单,即看即用
有pc端和移动端,国内国外随时随地使用
兼容多种硬件
支持HTTP或MQTT通信
提供配套硬件(Obloq)、库文件和示例程序
完善的使用示例文档
帮助入门者迅速开始一个物联网项目的实践

在这里插入图片描述

11、使用Easy IoT平台远距离收集声光数据

#MicroPython动手做(31)——物联网之Easy IoT
#使用Easy IoT平台远距离收集声光数据

#MicroPython动手做(31)——物联网之Easy IoT
#使用Easy IoT平台远距离收集声光数据

from mpython import *
import network
from umqtt.simple import MQTTClient
import music
import time

my_wifi = wifi()

my_wifi.connectWiFi("zh", "zy1567")

mqtt = MQTTClient("664fa81baa7fe777", "182.254.130.180", 1883, "qlZ0uezGR", "3_W0uezGgz", keepalive=30)

mqtt.set_last_will("TvkJXezMR", "I am offline")

try:
    mqtt.connect()
    print('Connected')
except:
    print('Disconnected')


oled.fill(0)
oled.DispChar("远距离收集声光数据", 10, 15, 1)
oled.show()
music.play('D5:1')
rgb.fill((int(0), int(102), int(0)))
rgb.write()
time.sleep_ms(1)
while True:
    rgb[1] = (int(255), int(0), int(0))
    rgb.write()
    time.sleep_ms(1)
    mqtt.publish("TvkJXezMR", (str(light.read())))
    mqtt.publish("ZlB0tWZMg", (str(sound.read())))
    time.sleep(1)
    rgb.fill( (0, 0, 0) )
    rgb.write()
    time.sleep_ms(1)

收集到的声音数据

在这里插入图片描述
在这里插入图片描述

收集到的光线数据

在这里插入图片描述
在这里插入图片描述

mPython X 实验图形编程

在这里插入图片描述

在这里插入图片描述

12、移动端EasyIoT小程序

微信小程序搜索Easy IoT或打开微信扫描下方二维码,使用DFRobot用户中心账号登陆(手机号+验证码),进入“我的设备”页面。“我的设备”页面显示了在Easy IoT物联网网站中拥有的设备列表。可以看到设备中物联网数据的数据图表。

在这里插入图片描述

移动端EasyIoT小程序

在这里插入图片描述

移动端EasyIoT小程序

在这里插入图片描述

#MicroPython动手做(31)——物联网之Easy IoT
#使用移动端EasyIoT小程序控制RGB灯

#MicroPython动手做(31)——物联网之Easy IoT
#使用移动端EasyIoT小程序控制RGB灯

from mpython import *
import network
from umqtt.simple import MQTTClient
import time
import music
from machine import Timer
import ubinascii

my_wifi = wifi()

my_wifi.connectWiFi("zh", "zy1567")

mqtt = MQTTClient("0805e3d04f3b34e7", "182.254.130.180", 1883, "qlZ0uezGR", "3_W0uezGgz", keepalive=30)

try:
    mqtt.connect()
    print('Connected')
except:
    print('Disconnected')

mqtt.set_last_will("TvkJXezMR", "Ready!")

def mqtt_topic_54766b4a58657a4d52(_msg):
    oled.DispChar((str(_msg)), 55, 24, 1)
    oled.show()
    if "on" == _msg:
        music.play('D5:1')
        rgb.fill((int(255), int(0), int(0)))
        rgb.write()
        time.sleep_ms(1)
        oled.DispChar("开灯", 52, 36, 1)
        oled.show()
    elif "off" == _msg:
        music.play('F5:1')
        rgb.fill( (0, 0, 0) )
        rgb.write()
        time.sleep_ms(1)
        oled.DispChar("关灯", 52, 36, 1)
        oled.show()

def mqtt_callback(topic, msg):
    try:
        topic = topic.decode('utf-8', 'ignore')
        _msg = msg.decode('utf-8', 'ignore')
        eval('mqtt_topic_' + bytes.decode(ubinascii.hexlify(topic)) + '("' + _msg + '")')
    except: print((topic, msg))

mqtt.set_callback(mqtt_callback)

mqtt.subscribe("TvkJXezMR")

def timer14_tick(_):
    mqtt.ping()

tim14 = Timer(14)
tim14.init(period=20000, mode=Timer.PERIODIC, callback=timer14_tick)


oled.invert(0)
oled.DispChar("移动版EasyIoT小程序", 5, 10, 1)
oled.show()
rgb[1] = (int(0), int(102), int(0))
rgb.write()
time.sleep_ms(1)
music.play('G5:1')
while True:
    mqtt.wait_msg()

用移动端EasyIoT小程序发送指令

在这里插入图片描述

mPython X 实验图形编程

在这里插入图片描述

用移动端EasyIoT小程序发送指令

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/834437.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PCIE扩频时钟及参考时钟要求

Spread Spectrum Clocking 1. 概述 Spread Spectrum Clocking(扩频时钟)是采用一种可控的方式使系统时钟抖动以减少峰值能量的过程。主要是为了尽量减少电磁干扰(EMI),主要应用在PCle和USB应用中。与非调制时钟相比,扩频时钟具有相对较高的抖动,应确保下游元件能够承受扩频…

Python:Spider爬虫工程化入门到进阶(1)Scrapy

本文通过简单的小例子,亲自动手创建一个Spider爬虫工程化的Scrapy项目 本文默认读着已经掌握基本的Python编程知识 目录 1、环境准备1.1、创建虚拟环境1.2、安装Scrapy1.3、创建爬虫项目 2、爬虫示例-爬取壁纸2.1、分析目标网站2.2、生成爬虫文件2.3、编写爬虫代码…

用python做一个小项目,python做简单小项目

大家好,本文将围绕用python做一个小项目展开说明,python做简单小项目是一个很多人都想弄明白的事情,想搞清楚python入门小项目需要先了解以下几个事情。 来源丨网络 经常听到有朋友说,学习编程是一件非常枯燥无味的事情。其实&…

实现实时互动:用Spring Boot原生WebSocket打造你的专属聊天室

😊 作者: 一恍过去 💖 主页: https://blog.csdn.net/zhuocailing3390 🎊 社区: Java技术栈交流 🎉 主题: 实现实时互动:用Spring Boot原生WebSocket打造你的专属聊天…

详解Nodejs中的Process对象

在Nodejs中,process是一个全局对象,它提供了与当前进程和运行时环境交互的方法和属性。通过process对象,我们可以访问进程的信息、控制流程和进行进程间通信,这些都是服务端语言应该具备的能力。本文将全面介绍process对象的使用场…

【雕爷学编程】 MicroPython动手做(35)——体验小游戏2

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…

从感知到理解-融合语言模型的多模态大模型研究

©PaperWeekly 原创 作者 | 张燚钧 单位 | 中国移动云能力中心 研究方向 | 预训练大模型 引言 近年来,大语言模型(Large language model, LLM)取得了显著进展。以 ChatGPT 为代表的 LLM 在自然语言任务上展现出惊人的智能涌现能力。尽管…

TPU-NNTC 编译部署LPRNet 车牌识别算法

TPU-NNTC 编译部署LPRNet 车牌识别算法 注意: 由于SOPHGO SE5微服务器的CPU是基于ARM架构,以下步骤将在基于x86架构CPU的开发环境中完成 初始化开发环境(基于x86架构CPU的开发环境中完成)模型转换 (基于x86架构CPU的开发环境中完成) 处理后的LPRNet 项…

sql入门4--函数

字符串函数 # -----字符串函数----- # concat(s1,s2,....)拼接 select concat(Hello ,Mysql); #str转换为小写 select lower(HELLO); # str转换为大写 select upper(mysql); # 向左侧添加 str 位数 要添加的元素 select lpad(1, 3 ,-); # 向右侧添加 str 位数 要添加的元…

【单调栈part01】| 739.每日温度、496.下一个更大元素

🎈LeetCode739. 每日温度 链接:739.每日温度 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不…

rv1109/1126 rknn 模型部署过程

rv1109/1126是瑞芯微出的嵌入式AI芯片,带有npu, 可以用于嵌入式人工智能应用。算法工程师训练出的算法要部署到芯片上,需要经过模型转换和量化,下面记录一下整个过程。 量化环境 模型量化需要安装rk的工具包: rockchip-linux/rk…

weblogic XML反序列化分析——CVE-2017-10271

环境 https://vulhub.org/#/environments/weblogic/CVE-2017-10271/ 启动环境 docker-compose up -d代码审计 传入参数 中间跟进函数 最后的出口 没有限制,直接包参数传入xmlDecoder public String readLine() throws IOException {return (String)this.xml…

Class Central-全球在线课程搜索引擎和学习平台

Class Central(课程中央网站)是一个全球在线课程搜索引擎和学习平台,全球知名的慕课资源导航社区,汇集了来自Coursera(斯坦佛大学)、edX(麻省理工学院)、Futurelearn(英国…

如何使用vue ui创建一个项目?

首先打开cmd 输入vue ui 等待浏览器打开一个窗口,按照下图操作 在"功能页面"中,各个插件代表以下意思: Babel:Babel是一个JavaScript编译器,用于将ES6代码转换为向后兼容的JavaScript版本,以确保…

ORB-SLAM2学习笔记6之D435i双目IR相机运行ROS版ORB-SLAM2并发布位姿pose的rostopic

文章目录 0 引言1 D435i相机配置2 新增发布双目位姿功能2.1 新增d435i_stereo.cc代码2.2 修改CMakeLists.txt2.3 新增配置文件D435i.yaml 3 编译运行和结果3.1 编译运行3.2 结果3.3 可能出现的问题 0 引言 ORB-SLAM2学习笔记1已成功编译安装ROS版本ORB-SLAM2到本地&#xff0c…

C++入门篇6 C++的内存管理

在学习C的内存管理之前,我们先来回顾一下C语言中动态内存 int main() {int* p1 (int*)malloc(sizeof(int));free(p1);// 1.malloc/calloc/realloc的区别是什么?int* p2 (int*)calloc(4, sizeof(int));//calloc 可以初始化空间为0int* p3 (int*)reall…

渗透-01:DNS原理和HTML字符编码-HTML实体编码

一、DNS概念 DNS (Domain Name System 的缩写)就是根据域名查出IP地址(常用) DNS分类&#xff1a; 正向解析&#xff1a;已知域名解析IP反向解析&#xff1a;已知IP解析对应的域名 二、查询过程 工具软件dig可以显示整个查询过程 [rootnode01 ~]# dig baidu.com; <<>&…

pytorch学习——卷积神经网络——以LeNet为例

目录 一.什么是卷积&#xff1f; 二.卷积神经网络的组成 三.卷积网络基本元素介绍 3.1卷积 3.2填充和步幅 3.2.1填充&#xff08;Padding&#xff09; 填充是指在输入数据周围添加额外的边界值&#xff08;通常是零&#xff09;&#xff0c;以扩展输入的尺寸。填充可以在卷…

重磅特性 - SpreadJS推出新插件甘特图,预览版下载体验中

摘要&#xff1a;本文由葡萄城技术团队于CSDN原创并首发。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 甘特图对于业务场景中的工程项目管理、预算执行、生产计划等都能将原有的表格数据&…

【数据分析】numpy (二)

numpy作为数据分析&#xff0c;深度学习常用的库&#xff0c;本篇博客我们来介绍numpy的一些进阶用法&#xff1a; 一&#xff0c;numpy的常用简单内置函数&#xff1a; 1.1求和&#xff1a; a np.array([[1, 2],[3, 4]]) np.sum(a)10 1.2求平均值&#xff1a; np.mean(a…