机器学习笔记之优化算法(九)收敛速度的简单认识

news2025/1/4 19:05:39

机器学习笔记之优化算法——收敛速度的简单认识

引言

本节对收敛速度简单介绍。

收敛速度的判别标准

我们之前几节介绍了线搜索方法 ( Line Search Method ) (\text{Line Search Method}) (Line Search Method),并从方向角度、步长角度描述了先搜索方法的迭代优化过程。关于针对目标函数 f ( X ) f(\mathcal X) f(X)优化的终极目标: min ⁡ X ∈ R n f ( X ) \mathop{\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) XRnminf(X),我们希望通过一系列数值解 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0,使其对应的目标函数结果 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0收敛到最优值 f ∗ f^* f
也可以等价写作: { x k } k = 0 ∞ ⇒ x ∗ ; f ( x ∗ ) = f ∗ \{x_k\}_{k=0}^{\infty} \Rightarrow x^*;f(x^*) = f^* {xk}k=0x;f(x)=f。其中 x ∗ x^* x则表示迭代产生的最优数值解: x ∗ = arg ⁡ min ⁡ X ∈ R n f ( X ) x^* = \mathop{\arg\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) x=XRnargminf(X)
{ f ( x k ) } k = 0 ∞ ⇒ f ∗ \{f(x_k)\}_{k=0}^{\infty} \Rightarrow f^* {f(xk)}k=0f

本节将介绍两种关于收敛速度的判别标准 Q \mathcal Q Q-收敛速度 R \mathcal R R-收敛速度

Q \mathcal Q Q-收敛速度

其中 Q \mathcal Q Q-收敛速度中的 Q \mathcal Q Q是指: Quotient \text{Quotient} Quotient,也就是除法中的。该方式主要围绕迭代过程中数值解 x k , x k + 1 x_k,x_{k+1} xk,xk+1最优解 x ∗ x^* x之间差异性的商值对收敛速度进行描述:

  • 由于 x k , x k + 1 , x ∗ x_k,x_{k+1},x^* xk,xk+1,x可能是 ∈ R n \in \mathbb R^n Rn的向量,因此关于差异性的描述使用范数进行表示。
  • 而这个范数也可以理解为:数值解最优解之间的距离,是一个正值。
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} klim∣∣xkx∣∣∣∣xk+1x∣∣

在判断是否为 Q \mathcal Q Q-收敛时,我们事先假定

  • k k k充分大——这意味着 x k , x k + 1 x_k,x_{k+1} xk,xk+1都经过充分迭代产生的数值解,因而它们均无限趋近于 x ∗ x^* x。也就是说:无论 ∣ ∣ x k + 1 − x ∗ ∣ ∣ ||x_{k+1} - x^*|| ∣∣xk+1x∣∣还是 ∣ ∣ x k − x ∗ ∣ ∣ ||x_{k} - x^*|| ∣∣xkx∣∣,它们都可视作无穷小量
    { lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ = 0 lim ⁡ k ⇒ ∞ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \begin{cases} \mathop{\lim}\limits_{k \Rightarrow \infty} ||x_{k+1} - x^*|| = 0 \\ \mathop{\lim}\limits_{k \Rightarrow \infty} ||x_{k} - x^*|| = 0 \\ \end{cases} klim∣∣xk+1x∣∣=0klim∣∣xkx∣∣=0
  • x k x_k xk f ( x k ) f(x_k) f(xk)同理——这个意思并不是 x k x_k xk f ( x k ) f(x_k) f(xk)可以进行相互替换,而是说在 Q \mathcal Q Q-收敛中, f ( x k ) f(x_k) f(xk)与· x k x_k xk一样存在相同形式的定义
    这两个定义在 Q \mathcal Q Q-收敛中没有区别,针对具体情况都可以进行使用。
    lim ⁡ k ⇒ ∞ ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{|| f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} klim∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣

我们根据收敛速度的强度由低到高介绍 4 4 4 Q \mathcal Q Q-收敛:

  • Q \mathcal Q Q-次线性收敛 ( Q-SubLinear Convergence ) (\text{Q-SubLinear Convergence}) (Q-SubLinear Convergence),其定义用数学符号表示为:
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 1 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 1 klim∣∣xkx∣∣∣∣xk+1x∣∣=1

  • Q \mathcal Q Q-线性收敛 ( Q-Linear Convergence ) (\text{Q-Linear Convergence}) (Q-Linear Convergence)。对应数学符号表示为:
    ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ ≤ a ∈ ( 0 , 1 ) \frac{||x_{k+1} - x^*||}{||x_k - x^*||} \leq a \in (0,1) ∣∣xkx∣∣∣∣xk+1x∣∣a(0,1)
    我们发现,与 Q \mathcal Q Q-次线性收敛不同的是,它并没有加极限符号。并且:差异性的比值被 ( 0 , 1 ) (0,1) (0,1)范围内的常数 a a a限制着。例如:目标函数值集合 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0服从函数 G ( k ) = 2 − k \mathcal G(k) = 2^{-k} G(k)=2k。其定义域内对应的函数图像表示如下:
    Q-线性收敛示例
    可以发现:随着 k ⇒ ∞ k \Rightarrow \infty k,可以得到最优解 f ∗ = 0 f^* = 0 f=0,而对应的 ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ \begin{aligned}\frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||}\end{aligned} ∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣在图像中可表示为相邻红色直线之间的比值。这个比值的计算结果为:
    ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ = 2 − ( k + 1 ) − 0 2 − k − 0 = 1 2 \frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} = \frac{2^{-(k+1)} - 0}{2^{-k} - 0} = \frac{1}{2} ∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣=2k02(k+1)0=21
    因此,由 G ( k ) \mathcal G(k) G(k)表示的 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0 a = 1 2 \begin{aligned}a = \frac{1}{2}\end{aligned} a=21 Q \mathcal Q Q-线性收敛
    此处所谓线性是指:将 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0视作为误差序列。也就是说:随着迭代次数 k k k的增加,误差信息 G ( k ) \mathcal G(k) G(k)越来越小,最终减少到 0 0 0。对误差取对数操作后,其结果 log ⁡ G ( k ) \log \mathcal G(k) logG(k) k k k之间呈线性关系
    这里关于 log ⁡ \log log取底数为 2 2 2
    log ⁡ G ( k ) = log ⁡ 2 2 − k = − k \log \mathcal G(k) = \log_2 2^{-k} =-k logG(k)=log22k=k
    a a a取到极限 1 1 1时, Q \mathcal Q Q-线性收敛会退化至 Q \mathcal Q Q-次线性收敛;相反,当 a a a取到极限 0 0 0时, Q \mathcal Q Q-线性收敛会进化至 Q \mathcal Q Q-超线性收敛。反过来说:

    • 为什么被称作 Q \mathcal Q Q-次线性收敛是因为:相比 Q \mathcal Q Q-线性收敛中相邻迭代产生的差异性比值能够明显地用 a ∈ ( 0 , 1 ) a \in (0,1) a(0,1)描述出来;而 Q \mathcal Q Q-次线性收敛中相邻迭代产生的差异性几乎完全相同,它们之间的差距可以忽略不计。从而才有:
      很明显,相比 Q \mathcal Q Q-次线性收敛, Q \mathcal Q Q-线性收敛的差异性更明显,收敛的速度更快。
      lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 1 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 1 klim∣∣xkx∣∣∣∣xk+1x∣∣=1
      例如: G ( k ) = 1 k \begin{aligned}\mathcal G(k) = \frac{1}{k}\end{aligned} G(k)=k1就是一个明显的 Q \mathcal Q Q-次线性收敛。其对应函数图像表示如下:
      很明显,相比上述的 G ( k ) = 2 − k \mathcal G(k)=2^{-k} G(k)=2k,随着迭代次数 k k k的增加,相邻红色线比值的变化并不非常明显。
      Q次线性收敛示例
      其次通过计算比值也能观察到类似的效果:
      很明显,当充分迭代之后,此时 k k k已经充分大,而 k k + 1 \begin{aligned}\frac{k}{k+1}\end{aligned} k+1k这样的收敛效果完全可以忽略不计。
      lim ⁡ k ⇒ ∞ ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ = lim ⁡ k ⇒ ∞ 1 k + 1 − 0 1 k − 0 = lim ⁡ k ⇒ ∞ k k + 1 = 1 \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} = \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{\frac{1}{k+1} - 0}{\frac{1}{k} - 0} = \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{k}{k+1} = 1 klim∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣=klimk10k+110=klimk+1k=1
  • Q \mathcal Q Q-次线性收敛相反, Q \mathcal Q Q-超线性收敛 ( Q-Superlinear Convergence ) (\text{Q-Superlinear Convergence}) (Q-Superlinear Convergence)的定义用数学符号表示为:
    这意味着相邻迭代次数之间差异性极大,使得 x k + 1 x_{k+1} xk+1对应的差异性结果与 x k x_k xk的差异性结果相比小到可以忽略不计,这里不再过多赘述。
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 0 klim∣∣xkx∣∣∣∣xk+1x∣∣=0

  • Q \mathcal Q Q-二次收敛 ( Q-Quadratic Convergence ) (\text{Q-Quadratic Convergence}) (Q-Quadratic Convergence)的定义用数学符号表示为:

    • 同理,如 Q \mathcal Q Q-三次收敛 ( Cubic Convergence ) (\text{Cubic Convergence}) (Cubic Convergence)等等,仅与分母中的指数项相关。
    • 相比于线性收敛中 a ∈ ( 0 , 1 ) a \in (0, 1) a(0,1),我们在 Q \mathcal Q Q-二次收敛中不会更多计较 a a a的范围,因为无穷小量的级别就可以说明其收敛速度。
      ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ 2 ≤ a ∈ ( 0 , + ∞ ) \frac{||x_{k+1} - x^*||}{||x_k - x^*||^2} \leq a \in (0,+\infty) ∣∣xkx2∣∣xk+1x∣∣a(0,+)

    Q \mathcal Q Q-线性收敛的定义类似,也同样没有极限符号。由于 ∣ ∣ x k − x ∗ ∣ ∣ ||x_k - x^*|| ∣∣xkx∣∣自身就是一个无穷小量,那么它的平方结果可理解为一个更高级别的无穷小量,反过来说明:如果 x k + 1 x_{k+1} xk+1差异性所描述的无穷小量与 x k x_k xk差异性的平方所描述的无穷小量是一个级别的话,那么它的收敛速度已经超越了线性范畴

    例如: G ( k ) = 2 − 2 k \mathcal G(k) = 2^{-2^{k}} G(k)=22k就是明显的 Q \mathcal Q Q-二次收敛。其对应的函数图像表示如下:
    很明显,相比上面的收敛,它的收敛速度更快了,这里不再过多赘述。
    Q二次收敛示例
    对应比值的计算结果是:
    G ( k + 1 ) − 0 [ G ( k ) ] 2 = 2 − 2 k + 1 [ 2 − 2 k ] 2 = 1 ∈ ( 0 , + ∞ ) \begin{aligned}\frac{\mathcal G(k+1) -0}{[\mathcal G(k)]^2} = \frac{2^{-2^{k+1}}}{[2^{-2^k}]^2} = 1 \in (0, +\infty)\end{aligned} [G(k)]2G(k+1)0=[22k]222k+1=1(0,+)

R \mathcal R R-收敛速度

其中 R \mathcal R R-收敛速度中的 R \mathcal R R是指: Root \text{Root} Root。关于假设条件与 Q \mathcal Q Q-收敛速度相同,这里不再赘述:

  • k k k充分大;
  • x k x_k xk f ( x k ) f(x_k) f(xk)共用相同概念

关于 R \mathcal R R-收敛速度定义的数学符号表示如下:
∣ ∣ x k − x ∗ ∣ ∣ ≤ t k ||x_k - x^*|| \leq t_k ∣∣xkx∣∣tk
其中 ∣ ∣ x k − x ∗ ∣ ∣ ||x_k - x^*|| ∣∣xkx∣∣依然是数值解与最优解之间的差异性信息(距离范数);该结果被另外一个序列 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0限制住

  • 如果 t k t_k tk Q \mathcal Q Q-次线性/线性/超线性/二次收敛
  • 并且 lim ⁡ k ⇒ ∞ t k = 0 \mathop{\lim}\limits_{k \Rightarrow \infty} t_k = 0 klimtk=0
    这说明 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0是一个 误差序列而不是数值解序列。上面的函数例子中,我们使用这些函数描述的是数值解序列 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0或者 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0,但这里示例函数 G ( k ) \mathcal G(k) G(k)最终都会收敛到 0 0 0,因而也可以将其视作误差序列

则称 x k x_k xk R \mathcal R R-次线性/线性/超线性/二次收敛
可以看出: Q \mathcal Q Q R \mathcal R R的区别在于:

  • 关于差异性的描述: Q ⇒ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ p ( p = 1 , 2 , 3 , ⋯   ) \begin{aligned}\mathcal Q \Rightarrow \frac{||x_{k+1} - x^*||}{||x_k - x^*||^p}(p=1,2,3,\cdots)\end{aligned} Q∣∣xkxp∣∣xk+1x∣∣(p=1,2,3,) R ⇒ ∣ ∣ x k − x ∗ ∣ ∣ \mathcal R \Rightarrow ||x_k - x^*|| R∣∣xkx∣∣
  • 相比于 Q \mathcal Q Q中使用具体值(0、1)或者范围 ( 0 , 1 ) ; ( 0 , + ∞ ) (0,1);(0,+\infty) (0,1);(0,+) R \mathcal R R则使用误差序列 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0,并且每一个迭代步骤 k = 0 , 1 , 2 , ⋯ k=0,1,2,\cdots k=0,1,2,均被对应 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0中的 t 0 , t 1 , t 2 , ⋯ t_0,t_1,t_2,\cdots t0,t1,t2,限制住。

之所以会定义 R \mathcal R R-收敛速度,原因在于:一些情况下, Q \mathcal Q Q-收敛速度不容易求解,如果找到一组合适的 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0,可以根据 t k t_k tk的收敛速度,从而对 x k x_k xk的收敛速度进行表达。例如:
∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ G ( k ) = 1 k ||f(x_k) - f^*|| \leq \mathcal G(k) = \frac{1}{k} ∣∣f(xk)f∣∣G(k)=k1
我们已经知道:满足 G ( k ) \mathcal G(k) G(k)误差序列 Q \mathcal Q Q-次线性收敛,因而可以判断 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0 R − \mathcal R- R次线性收敛

关于算法复杂度与收敛速度

在真实情况下,我们不能任由算法无限迭代下去,即 k k k不能无限大。因而我们会设置一些判断条件。例如:
这里 ϵ \epsilon ϵ表示描述限制条件的超参数。达到该条件,即可停止算法。
∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ ϵ ||f(x_k) - f^*|| \leq \epsilon ∣∣f(xk)f∣∣ϵ

  • 如果依然以 Q \mathcal Q Q-次线性收敛 1 k \begin{aligned}\frac{1}{k}\end{aligned} k1为例,需要满足:
    ∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ G ( k ) = 1 k ≤ ϵ ⇒ k ≥ 1 ϵ ||f(x_k) - f^*|| \leq \mathcal G(k) =\frac{1}{k} \leq \epsilon \Rightarrow k \geq \frac{1}{\epsilon} ∣∣f(xk)f∣∣G(k)=k1ϵkϵ1
    可以看出: ϵ \epsilon ϵ越小时,迭代的次数 k k k越大
  • 如果以 Q \mathcal Q Q-线性收敛 2 − k 2^{-k} 2k为例,需要满足:
    2 − k ≤ ϵ ⇒ k ≥ log ⁡ 2 1 ϵ 2^{-k} \leq \epsilon \Rightarrow k \geq \log_2 \frac{1}{\epsilon} 2kϵklog2ϵ1

可以观察到: ϵ \epsilon ϵ很小的情况下,关于 1 ϵ \begin{aligned}\frac{1}{\epsilon}\end{aligned} ϵ1其量级远高于 log ⁡ 2 1 ϵ \begin{aligned}\log_2 \frac{1}{\epsilon}\end{aligned} log2ϵ1
随着 1 ϵ \begin{aligned}\frac{1}{\epsilon}\end{aligned} ϵ1的增加, Q \mathcal Q Q-次线性收敛(蓝色直线) Q \mathcal Q Q-线性收敛(橙色曲线)对应的函数结果相比,其对应函数值的增速明显更高,而更高意味着更多的迭代步骤

算法复杂度与收敛速度示例
因此,一般情况下,使用更高强度的收敛速度,那么他的迭代步骤就会减小,从而降低算法复杂度。

相关参考:
【优化算法】收敛速度简介
优化里的Q-linear Convergence和R-linear convergence是什么意思?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/831530.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

无人驾驶实战-第四课(动态环境感知与2D检测算法)

无人驾驶中的检测框架 2D目标检测的思路 位置:先找到所有的ROI (Region of Interest, bounding box may containing object)类别:对每一个ROI做分类获取类别信息 位置修正:Bounding box Regression 找寻ROI的方法 1.滑窗法。从左到右&#xf…

Ansys Zemax | 大功率激光系统的 STOP 分析 (三)

大功率激光器广泛用于各种领域当中,例如激光切割、焊接、钻孔等应用中。由于镜头材料的体吸收或表面膜层带来的吸收效应,将导致在光学系统中由于激光能量吸收所产生的影响也显而易见,大功率激光器系统带来的激光能量加热会降低此类光学系统的…

Java中的内存划分,一个数组的内存图,两个数组的内存图,两个引用指向同一个数组的内存图

1、Java中的内存划分 Java的内存需要分成5个部分: 栈(Stack) 存放的都是 方法 中的 局部变量 。方法的运行一定要在栈当中运行。 局部变量:方法的参数,或者是方法{}内部的变量 作用域:一旦超出作用域&#…

ubuntu调整路由顺序

Ubuntu系统跳转路由顺序 1、安装ifmetric sudo apt install ifmetric2、查看路由 route -n3、把Iface下面的eth1调到第一位 sudo ifmetric eth1 0命令中eth1是网卡的名称,更改网卡eth1的跃点数(metric值)为0(数值越小&#xf…

存放数据的方式:Java集合框架

文章目录 1. 目前存放数据的方式2. Java集合框架3. Collection接口常用方法解析public boolean add(E e)public void clear()public boolean remove(E e)public boolean contains(E e)public boolean isEmpty()public int size()public Object[] toArray() 4. 迭代器5. 增强for…

从零基础开始开发自己的第一个微信小程序

文章目录 内容介绍小程序开发步骤注册微信小程序账号下载开发工具搭建开发环境创建工程编写代码手机上查看效果 工程里的文件作用介绍总结 内容介绍 通过本篇blog,你可以熟悉从零开始,搭建小程序开发环境,并运行起自己的第一个小程序。 小程…

Stability AI旗舰图像模型 SDXL1.0发布,AI绘画进入新的时代

Stability AI于7月26号开源了SDXL1.0文生图模型,要知道距离SDXL0.9开源发布也不过一个月,只能说AI发展日新月异。 根据官网介绍,SDXL1.0经过迭代更新,已经是目前世界上最好的图像生成模型 官网根据Discord上的几代实验模型和外部测试&#…

股票量价关系分析

量增价平 量增价平是指成交量增加,股价保持相对平稳的量价关系模型,量的增加可以是资金大量流入引起,也可以是资金大量流出引起,因此这种关系模型需要根据股价所处的位置来具体分析。1、股价处于低位 当股价处于低位,此…

Unity之webgl端通过vue3接入腾讯云联络中心SDK

腾讯云联络中心SDK:云联络中心 Web-SDK 开发指南-文档中心-腾讯云 (tencent.com) 1 首先下载Demo ​ 1.1 对其进行解压 ​ 1.2根据文档操作 查看README.md,根据说明设置server下的dev.js里的相关参数。 然后打开电脑终端,cd到项目的路径: ​ 安装…

喜报 | 《中国AIOps现状调查报告(2023)》发布!擎创科技案例再度入选

(本文部分内容来自《中国AIOps现状调查报告(2023)》,丝小编扣1,领取完整版报告) 2023年7月18日,信通院Xops产业创新发展论坛于北京成功举办。大会旨在提高企业研发运营水平,加强XOp…

243. 一个简单的整数问题2(树状数组)

输入样例: 10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4输出样例: 4 55 9 15 解析: 一般树状数组都是单点修改、区间查询或者单点查询、区间修改。这道题都是区间操作。 1. 区间修改用数组数组维护差分数组 2. 区间查询&am…

实现弧形切角两种方式

1、css 的 radial-gradient <view style"padding:30px; background: #ccc;"><view class"navActive"></view> </view>.navActive{width: 200px;height: 40px;background-color: #fff;color: rgb(0,63,136);position: relative;bor…

windows环境下安装elasticsearch、kibana

通过本文可以快速在windows系统上安装elasticsearch、kibana环境。 当你用Integer类型的时候&#xff0c;要非常小心&#xff0c;因为100等于100、但是200不等于200&#xff0c;当然&#xff0c;如果你会一点小花招&#xff0c;也可以让100不等于100、让200等于200。(运算符比较…

优化供应链和库存管理:PDM系统的物料控制之道

在现代制造业中&#xff0c;优化供应链和库存管理是企业实现高效运营和降低成本的重要目标。PDM系统作为一款强大的数字化工具&#xff0c;扮演着物料控制之道的角色&#xff0c;帮助企业实现优化供应链和库存管理的目标。让我们一同深入探讨&#xff0c;看看PDM系统是如何通过…

git clone 登录 github

git clone 登录 github 目录概述需求&#xff1a; 设计思路实现思路分析1.github 设置setting2.输入passwd 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result…

mac切换jdk版本

查询mac已有版本 1、打开终端&#xff0c;输入&#xff1a; /usr/libexec/java_home -V注意&#xff1a;输入命令参数区分大小写(必须是-V) 2.目前本地装有两个版本的jdk xxxxedydeMacBook-Pro-9 ~ % /usr/libexec/java_home -V Matching Java Virtual Machines (2):20.0.1 (…

Cocos Creator不规则按钮

实现该功能需要用到组件PolygonCollider2D&#xff0c;官方链接&#xff1a; https://docs.cocos.com/creator/3.4/manual/zh/physics-2d/physics-2d-collider.html 创建组件 创建一个精灵节点&#xff1a; 创建碰撞组件PolygonColider2D&#xff0c;如图 给按钮添加多边形碰…

【Axure教程】移动端二级滑动选择器

今天教大家制作移动端二级滑动选择器的原型模板&#xff0c;该原型已全国一二级省市选择器为案例&#xff0c;因为该原型用中继器做的&#xff0c;所以制作完成之后使用也很方便&#xff0c;只需修改中继器表格里的内容即可 一、效果展示 1. 拖动选择 2. 快捷选择 【原型预览…

超全整理——116道网络安全工程师面试真题(附答案),建议收藏!

随着国家对网络安全的重视度&#xff0c;促使这个职业也变得炙手可热&#xff0c;越来越多的年轻人为进入安全领域在做准备。 数以百计的面试&#xff0c;为何迟迟无法顺利入职&#xff1f;能力无疑是至关重要的&#xff0c;可却有不少能力不比已入职的同事差却应聘失败的人&a…

vite babel 获取组件的 children 代码, 填写到 jsxCode 属性中

最终效果 <DocsModule title"类型"><Button>默认按钮</Button><Button type"primary">主要按钮</Button><Button type"success">成功按钮</Button><Button type"danger">危险按钮&l…