✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
智能优化算法 神经网络预测 雷达通信 无线传感器
信号处理 图像处理 路径规划 元胞自动机 无人机 电力系统
⛄ 内容介绍
随机分形搜索 (SFS) 是一种新的原始元启发式搜索 (MHS) 算法,具有强大的基础。与许多其他 MHS 方法一样,SFS 算法在有效平衡开发-探索方面存在问题。为了达到这种平衡,需要提高其多样性能力。本文介绍了为加强 SFS 算法的多样性和平衡搜索能力而进行的研究。为此,SFS 算法的多样性算子采用一种称为适合度-距离平衡 (FDB) 的新方法设计,该方法更有效地模拟了分形在自然界中发生的方式。因此,具有更强搜索性能的FDBSFS算法应运而生。进行了全面的实验研究以测试和验证开发的基于 FDB 的 SFS 算法 (FDBSFS)。使用了 39 个新颖而强大的 MHS 算法、89 个无约束测试函数和 5 个约束工程问题。两个非参数检验,Wilcoxon 符号秩检验和 Friedman 检验,用于分析从实验研究中获得的结果。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。使用了 89 个无约束测试函数和 5 个约束工程问题。两个非参数检验,Wilcoxon 符号秩检验和 Friedman 检验,用于分析从实验研究中获得的结果。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。使用了 89 个无约束测试函数和 5 个约束工程问题。两个非参数检验,Wilcoxon 符号秩检验和 Friedman 检验,用于分析从实验研究中获得的结果。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。
⛄ 部分代码
function index = fitnessDistanceBalance( population, fitness )
[~, bestIndex] = min(fitness);
best = population(bestIndex, :);
[populationSize, dimension] = size(population);
distances = zeros(1, populationSize);
normFitness = zeros(1, populationSize);
normDistances = zeros(1, populationSize);
divDistances = zeros(1, populationSize);
if min(fitness) == max(fitness)
index = randi(populationSize);
else
for i = 1 : populationSize
value = 0;
for j = 1 : dimension
value = value + abs(best(j) - population(i, j));
end
distances(i) = value;
end
minFitness = min(fitness); maxMinFitness = max(fitness) - minFitness;
minDistance = min(distances); maxMinDistance = max(distances) - minDistance;
for i = 1 : populationSize
normFitness(i) = 1 - ((fitness(i) - minFitness) / maxMinFitness);
normDistances(i) = (distances(i) - minDistance) / maxMinDistance;
divDistances(i) = normFitness(i) + normDistances(i);
end
[~, index] = max(divDistances);
end
end
⛄ 运行结果
⛄ 参考文献
Aras, Sefa, et al. “A Novel Stochastic Fractal Search Algorithm with Fitness-Distance Balance for Global Numerical Optimization.” Swarm and Evolutionary Computation, Elsevier BV, Dec. 2020, p. 100821, doi:10.1016/j.swevo.2020.100821.
⛄ Matlab代码关注
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料