【并发专题】单例模式的线程安全(进阶理解篇)

news2025/1/16 5:10:05

目录

  • 背景
  • 前置知识
    • 类加载运行全过程
  • 单例模式的实现方式
    • 一、饿汉式
      • 基本介绍
      • 源码
      • 分析
    • 二、懒汉式
      • 基本介绍
      • 源码
      • 分析
      • 改进
    • 三、懒汉式单例终极解决方案(静态内部类)(推荐使用方案)
      • 基本介绍
      • 源码
      • 分析
  • 感谢

背景

最近学习了JVM之后,总感觉知识掌握不够深,所以想通过分析经典的【懒汉式单例】来加深一下理解。(主要是【静态内部类】实现单例的方式)。
如果小白想理解单例的话,也能看我这篇文章。我也通过了【前置知识】跟【普通懒汉式】、【双检锁懒汉】、【静态内部类】懒汉给大家分析了一下他们的线程安全性。但是,我这边没有完整的演进【懒汉式单例】历程。所以,会缺少思维上的递进。不过,我在最后的【感谢】名单里,提供了一个完整的【懒汉式单例演进】的链接,建议可以结合这个文章一起学习。

前置知识

类加载运行全过程

当我们用java命令运行某个类的main函数启动程序时,首先需要通过类加载器把主类加载到JVM。

package com.tuling.jvm;

public class Math {
    public static final int initData = 666;
    public static User user = new User();

    public int compute() {  //一个方法对应一块栈帧内存区域
        int a = 1;
        int b = 2;
        int c = (a + b) * 10;
        return c;
    }

    public static void main(String[] args) {
        Math math = new Math();
        math.compute();
    }
}

通过Java命令执行代码的大体流程如下:
在这里插入图片描述
其中loadClass的类加载过程有如下几步:
加载 >> 验证 >> 准备 >> 解析 >> 初始化 >> 使用 >> 卸载

  • 加载:在硬盘上查找并通过IO读入字节码文件,使用到类时才会加载,例如调用类的main()方法,new对象等等,在加载阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口
  • 验证:校验字节码文件的正确性
  • 准备:给类的静态变量分配内存,并赋予默认值
  • 解析:将符号引用替换为直接引用,该阶段会把一些静态方法(符号引用,比如main()方法)替换为指向数据所存内存的指针或句柄等(直接引用),这是所谓的静态链接过程(类加载期间完成),动态链接是在程序运行期间完成的将符号引用替换为直接引用,下节课会讲到动态链接
  • 初始化:对类的静态变量初始化为指定的值,执行静态代码块
    在这里插入图片描述

总结一下,上面说的加载 >> 验证 >> 准备 >> 解析 >> 初始化过程是由JVM帮我们进行的,所以,对我们程序员来说,【天生】就具备线程安全性(这个由JVM帮我们保证,无需我们关心)。

单例模式的实现方式

单例模式,是我们Java中很常见的一个设计模式。所以有这么一种说法:遇事不决,单例解决。
Java单例通常有2种,分别为:饿汉式、懒汉式

一、饿汉式

基本介绍

饿汉式(Eager Initialization,急切的初始化),在类加载时就创建单例实例,并在需要时直接返回该实例。这种方式的实现是线程安全的,因为在类加载过程中实例已经创建好了。

源码

public class SingletonTest {
    private static final SingletonTest me = new SingletonTest();
    
    public static SingletonTest me() {
        return me;
    }
    
    public static void main(String[] args) {
        System.out.println(SingletonTest.me());
        System.out.println(SingletonTest.me());
        System.out.println(SingletonTest.me());
    }
//    系统输出如下:
//    org.tuling.juc.singleton.SingletonTest@12a3a380
//    org.tuling.juc.singleton.SingletonTest@12a3a380
//    org.tuling.juc.singleton.SingletonTest@12a3a380
}

分析

因为单例对象SingletonTest 是静态成员变量,所以,在JVM类加载过程中==(加载-》验证-》准备-》解析-》初始化)==的【解析】阶段已经被JVM初始化了,所以,由JVM保证了线程安全性。

二、懒汉式

基本介绍

懒汉式(Lazy Initialization),在首次调用时创建单例实例,存在线程安全问题。如果多个线程同时进入判断条件,可能会创建多个实例。

源码

public class SingletonTest {
    private static SingletonTest me;

    public static SingletonTest me() {
        if(me == null) {
            me = new SingletonTest();
        }
        return me;
    }

    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            new Thread(()->{
                System.out.println(SingletonTest.me());
            }).start();
        }
    }
}

输出结果如下
在这里插入图片描述

分析

为什么上面这段代码不是线程安全的呢?我们举一个极端的例子,如下图所示:
在这里插入图片描述
在没有锁机制的存在情况下,多线程环境里面可能会出现上述的并发执行情况。在线程1判断完me == null之后,即将开始执行new之前,线程2也刚好在判断me == null,这是因为线程1还没有执行new操作,所以线程2判断肯定是null的,于是也开始new。这就是线程安全问题所在。
(PS:小白们一定要理解上面这个图。虽然很简单,但是说它是你们迈向,或者培养【并发意识】的启蒙都不为过。)

改进

为了解决上面的问题,大牛们进行了改进,使用了【双检锁+volatile】机制,【双检锁】,即:双重检查锁。代码如下:

public class SingletonTest {
    private static volatile SingletonTest me;

    public static SingletonTest me() {
        if(me == null) {
            synchronized (SingletonTest.class) {
                if (me == null) {
                    me = new SingletonTest();
                }
            }
        }
        return me;
    }
}

上面的改进,关键点如下:

  1. 使用了volatile关键字修饰单例对象me
  2. 在获取单例对象的时候,判断了两次if(me == null)
  3. 第二次判断if(me == null)之前,先加了锁

第二、三点我就不说了,大家可以看看最下面【感谢】的友链。这里重点说说第一点。
估计小白会很难理解,为什么一定要volatile关键字修饰,不用可以吗?答案是:不可以。因为,volatile能禁止重排序。什么是【重排序呢】?说的简单点,就是JVM,甚至是CPU为了性能,可能会在不改变语义的情况下修改我们的代码执行顺序。比如,当我们new SingletonTest()的时候,你以为只有一步操作,实际上,它有3步,如下:

memory = allocate(); // 1.分配对象内存空间
instance(memory); // 2.初始化对象
instance = memory; // 3.设置instance指向刚分配的内存地址,此时instance!=null

但事实上,经过重排序之后可能会变成下面的执行顺序:

memory = allocate(); // 1.分配对象内存空间
instance = memory; // 3.设置instance指向刚分配的内存地址,此时instance!=null
instance(memory); // 2.初始化对象

然后大家再用上面的【并发启蒙】意识,自己画个图看下,还能线程安全吗?
所以,需要使用volatile关键字,告诉底层JVM或者CPU,不要帮我重排序这个对象!于是就避免了上面的并发线程安全问题了。

三、懒汉式单例终极解决方案(静态内部类)(推荐使用方案)

基本介绍

这里通过利用JVM类加载【天生线程安全】的特性,来帮助实现【懒汉式】的单例。如何做到呢?答案是【静态内部类】。

源码

public class SingletonTest {
    /** 单例对象,可以直接调用配置属性  */
    private static class Holder {
        private static SingletonTest me = new SingletonTest();
    }
    public static SingletonTest me() {
        return Holder.me;
    }

    public static void main(String[] args) {
        int threadCount = 10000;
        for (int i = 0; i < threadCount; i++) {
            new Thread(()->{
                System.out.println(SingletonTest.me());
            }).start();
        }
    }
}

上面的代码,新建了1W个线程来调用单例,我们发现,结果都是一样,同一个对象。
在这里插入图片描述

分析

为什么上面,通过静态内部类能保证线程安全性呢?这个我们在【前置知识】已经说过了,是由JVM保证了线程安全性。
在这里插入图片描述
如上图所示,只有当我们使用了SingletonTest.me()的时候,才会去开始加载Holder静态内部类,这就是它实现【懒汉式】的原因(延迟加载)。

感谢

感谢【作者:weixin_47196090】的深度好文,《懒汉式单例演进到DCL懒汉式 深度全面解析》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/829919.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【HMS Core】位置服务逆地理编码请求错误问题

【关键字】 HMS、位置服务、逆地理编码 【问题描述】 有开发者反馈在集成位置服务-逆地理编码时&#xff0c;出现了请求报错的问题。 后端请求逆地理编码 错误 { "returnCode": "010010", "returnDesc": "INVALID_REQUEST" } 【问…

【雕爷学编程】Arduino动手做(181)---Maixduino AI开发板9

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

rest-apiV2.0.0升级为simplest-api开源框架生态之simplest-jpa发布

什么是 simplest simplest 追求存粹简单和极致。 旨在为项目快速开发提供一系列的基础能力&#xff0c;方便用户根据项目需求快速进行功能拓展 不在去关心一些繁琐。重复工作&#xff0c;而是把重点聚焦到业务。 前言 程序 10 年。作为一个多年程序。深知每个项目和程序&a…

最令跨境电商信服的六个电子商务营销策略

自从人们开始适应“新常态”以来&#xff0c;电子商务销售额一直在快速增长。进入智能手机和平板电脑时代&#xff0c;在线购物有望成为未来几年每个品牌的关键增长引擎。 数字零售格局的持续转型&#xff0c;您不得不考虑放弃一些利润较低的实体店&#xff0c;并进军电子商务&…

为什么说数字时代的品牌就是体验?

​ 在数字时代&#xff0c;品牌通常被称为“体验”&#xff0c;因为消费者现在以比以往更加动态和身临其境的方式与品牌互动。传统上&#xff0c;品牌主要侧重于创建独特的视觉形象并通过广告和其他营销渠道传达一致的信息。尽管这些方面仍然很重要&#xff0c;但数字环境已经…

应用案例|基于高精度3D视觉引导压缩机抓取定位应用

Part.1 行业现状 3D机器视觉是一种新兴的人工智能技术&#xff0c;它在机器视觉和机器学习领域中发挥着重要的作用。在工业领域&#xff0c;3D视觉技术被广泛应用于引导工业机器人进行抓取和定位操作。使用显扬科技的技术可以实现识别和定位压缩机。 Part.2 如何识别和定位压缩…

appium自动爬取数据

爬取类容&#xff1a;推荐知识点中所有的题目 爬取方式&#xff1a;appium模拟操作获取前端数据 入门级简单实现&#xff0c;针对题目和答案是文字内容的没有提取出来 适用场景;数据不多&#xff0c;参数加密&#xff0c;反爬严格等场景 from appium import webdriver impor…

小程序开发:开发框架与工具的使用指南

引言 本文以微信小程序为例介绍了小程序开发框架与工具的使用&#xff0c;通过本文的阅读&#xff0c;相信大家能够简单了解小程序开发的基本流程和常用工具&#xff0c;从而快速上手小程序开发。 文章目录 引言一、小程序开发框架与工具简介1.1 小程序开发框架1.2 小程序开发工…

百度文心大模型,彻底火了!丨IDCF

IDC报告显示&#xff0c;百度稳居中国深度学习平台市场综合份额第一。 根据中国信通院发布的《深度学习平台报告(2022)》&#xff0c;飞桨是中国深度学习市场应用规模第一的深度学习框架和赋能平台。通过飞桨与文心协同优化&#xff0c;文心大模型3.5&#xff0c;在14个参评模…

CSS 滚动条

一、滚动条样式属性 ::-webkit-scrollbar {width: 6px; /* 竖向滚动条宽度 */height: 6px; /* 横向滚动条高度 */ }::-webkit-scrollbar-thumb {border-radius: 10px; /* 滚动条样式 */-webkit-box-shadow: inset 0 0 3px red; /* 内阴影 */background-color: blue; /* 滚动条…

SpringBoot使用RestTemplate发送http请求(实操版)

前言 查看此文章前强烈建议先看这篇文章&#xff1a;Java江湖路 | 专栏目录 该文章纪录的是SpringBoot使用RestTemplate发送http请求&#xff0c;每一步都有记录&#xff0c;争取每一位看该文章的小伙伴都能操作成功。达到自己想要的效果~ 文章目录 前言1、SpringBoot调用外部…

RabbitMQ(二)

二、高级特性、应用问题以及集群搭建 高级特性 1.消息的可靠性投递 在使用RabbitMQ的时候&#xff0c;作为消息发送方希望杜绝任何消息丢失或者投递失败场景。RabbitMQ 为我们提供了两种方式用来控制消息的投递可靠性模式。 rabbitMQ整个消息投递的路径为&#xff1a; produ…

mysql-入门笔记-3

# ----------排序查询-------- # 语法 # select 字段列表 from 表名 order by 字段1 排序方式1 ,字段2 排序方式2 ; DESC 降序 ASC升序 # 1 根据年龄对公司的员工进行升序排序---默认升序-黄色提示代码冗余 select * from userTable order by age ASC ; # 2 根据入职时间,对员…

LPython:最新的高性能Python实现、速度极快且支持多后端

LPython 是最新的开源 Python 实现&#xff0c;目标是打造高性能版本的 Python。 LPython 官网写道&#xff0c;它一直作为 Python 编译器在开发&#xff0c;能够生成优化的机器代码。LPython 的后端支持 LLVM、C/C 翻译&#xff0c;甚至还支持 WebAssembly (WASM)。 LPython 主…

CGAL-几何对象基础判断-点线段使用-hello world

文章目录 1.概述2.点和线段3.点序列的凸包3.1.内置数组中点的凸包3.2.向量中点的凸包 4.关于kernel和Traits类5.概念和模型 1.概述 本教程是为CGAL新手&#xff0c;大概知道c和几何算法的基本知识。第一部分展示了如何定义点和段类&#xff0c;以及如何在它们上应用几何谓词。…

环球数科、BUFFALO面试(部分)

环球数科 系统复杂且需求迭代频繁&#xff0c;如何维护微服务之间的接口调用关系&#xff1f; API接口在设计的时候需要大量的需求文档&#xff0c;而且文档也需要不断维护。如何高效维护API文档就很重要了。以下是一些常见的API管理工具&#xff1a;Swagger&#xff1a;Swag…

云主机OOM宕机原因分级及处理

一、故障现象 某次服务器告警宕机故障&#xff0c;无法ssh连入&#xff0c;控制台登录后查看&#xff0c;发生OOM事件&#xff0c;OOM就是我们常说的Out of Memory内存溢出&#xff0c;它是指需要的内存空间大于系统分配的内存空间&#xff0c;导致项目程序crash&#xff0c;甚…

【MySQL】使用C/C++连接MySQL数据库

【MySQL】使用C/C连接MySQL数据库 验证使用select特殊点 本文目的&#xff1a;使用MySQL提供的CAPI完成对数据库的操作 验证 #include <iostream> #include <mysql/mysql.h>int main() {std::cout<<"mysql cilent version: "<<mysql_get_cl…

面试热题100(二叉树的右视图)

给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 树这类问题用的最多的就是递归&#xff0c;因为树具有天然的递归结构&#xff1a; 我们来分析一下题目&#xff0c;给定一棵树根结…

回归预测 | MATLAB实现SO-CNN-GRU蛇群算法优化卷积门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-GRU蛇群算法优化卷积门控循环单元多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-GRU蛇群算法优化卷积门控循环单元多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SO-CNN-GRU蛇群算法优化卷积门控循…