python与深度学习(十四):CNN和IKUN模型二

news2024/11/17 15:49:57

目录

  • 1. 说明
  • 2. IKUN模型的CNN模型测试
    • 2.1 导入相关库
    • 2.2 加载模型
    • 2.3 设置保存图片的路径
    • 2.4 加载图片
    • 2.5 图片预处理
    • 2.6 对图片进行预测
    • 2.7 显示图片
  • 3. 完整代码和显示结果
  • 4. 多张图片进行测试的完整代码以及结果

1. 说明

本篇文章是对上篇文章猫狗大战训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。

2. IKUN模型的CNN模型测试

2.1 导入相关库

在这里导入需要的第三方库如cv2,如果没有,则需要自行下载,自行下载时候一般建议镜像源,这样下载的快。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras

2.2 加载模型

把训练好的模型也加载进来,这里不用加载数据,因为数据是自制的。

# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')

2.3 设置保存图片的路径

将数据集的某个数据以图片的形式进行保存,便于测试的可视化,这里在之前已经分了测试集,因此设置图片路径即可。
在这里设置图片存储的位置,便于将图片进行存储。

# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1', '4.jpg')

上述代码是将test文件夹里面的4.jpg进行测试,如果想测试其它的只需改为x.jpg即可。
在这里插入图片描述

2.4 加载图片

采用cv2对图片进行加载,用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是三通道的,因此不只用取单通道,而是三通道,这里和之前的灰度图不同。

# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))

2.5 图片预处理

对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。因此在这里将形状改变为1501503的,前面的1是样本数,所以是(1,150,150,3)。

# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)

2.6 对图片进行预测

将图片输入给训练好我的模型并且进行预测。
因为是二分类,所以预测的结果是1个概率值,所以需要进行处理, 大于0.5的是坤坤,小于0.5的是鸡。

# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:
    print('png的所属类别:', '坤哥')
else:
    print('png的所属类别:', '鸡哥')

2.7 显示图片

对预测的图片进行显示,把预测的数字显示在图片上。
下面5行代码分别是创建窗口,设定窗口大小,显示图片,停留图片,清除内存。

# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

3. 完整代码和显示结果

以下是完整的代码和图片显示结果。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras


# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1', '4.jpg')
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:
    print('png的所属类别:', '坤哥')
else:
    print('png的所属类别:', '鸡哥')
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 [==============================] - 0s 315ms/step
test.png的预测概率: [[1.]]
test.png的预测概率: 1.0
png的所属类别: 坤哥

在这里插入图片描述

4. 多张图片进行测试的完整代码以及结果

为了测试更多的图片,引入循环进行多次测试,效果更好。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np

# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')

prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):
    path1 = input("input the test picture path:")
    # 创建图片保存路径
    test_file_path = os.path.join('imgs', 'test1', path1)
    # 加载本地test.png图像
    image = cv2.imread(test_file_path)
    # 复制图片
    test_img = image.copy()
    # 将图片大小转换成(150,150)
    test_img = cv2.resize(test_img, (150, 150))
    # 预处理: 归一化 + reshape
    new_test_img = (test_img / 255.0).reshape(1, 150, 150, 3)
    # 预测
    y_pre_pro = recons_model.predict(new_test_img, verbose=1)
    # 哪一类数字
    class_id = np.argmax(y_pre_pro, axis=1)[0]
    print('test.png的预测概率:', y_pre_pro)
    print('test.png的预测概率:', y_pre_pro[0, class_id])
    if y_pre_pro[0, class_id] > 0.5:
        print('png的所属类别:', '坤哥')
    else:
        print('png的所属类别:', '鸡哥')
    # # 显示
    cv2.namedWindow('img', 0)
    cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
    cv2.imshow('img', image)
    cv2.waitKey()
    cv2.destroyAllWindows()
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
input the number of test picture :2
input the test picture path:3.jpg
1/1 [==============================] - 0s 170ms/step
test.png的预测概率: [[0.99739295]]
test.png的预测概率: 0.99739295
png的所属类别: 坤哥

在这里插入图片描述

input the test picture path:10.jpg
1/1 [==============================] - 0s 163ms/step
test.png的预测概率: [[0.09064844]]
test.png的预测概率: 0.09064844
png的所属类别: 鸡哥

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/827013.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

opencv 31-图像平滑处理-方框滤波cv2.boxFilter()

方框滤波(Box Filtering)是一种简单的图像平滑处理方法,它主要用于去除图像中的噪声和减少细节,同时保持图像的整体亮度分布。 方框滤波的原理很简单:对于图像中的每个像素,将其周围的一个固定大小的邻域内…

DP-GAN剩余代码

在前面计算完损失后,该进行更新: 1:netEMA是模型的生成器: 遍历生成器的state_dict,将每一个键对应的值乘以EMA_decay。 接着根据当前迭代步数计算num_upd,每1000,2500,10000代倍数就执行一次。 当num…

MyBatis查询数据库1(概念+创建项目+基础交互)

目录 1.MyBatis是什么? 2.为什么学习MyBatis? 3. 怎么学 MyBatis 4.第⼀个MyBatis查询 4.1 添加MyBatis框架支持 4.1.1老项目添加MyBatis 4.1.2 新项目添加MyBatis 4.2 配置连接字符串和MyBatis 4.2.1 配置连接字符串 4.2.2 配置 MyBatis 中的…

PHM的设备故障模型如何构建?

预测性维护与健康管理(Prognostics Health Management,PHM)是现代工业中的一个关键概念,它旨在通过使用数据和先进的分析技术,实现设备故障的早期预测和预防,从而最大限度地提高设备的可用性和可靠性。而在…

DAY1,C高级(命令,Linux的文件系统,软、硬链接文件)

1.今日思维导图; 2.创建链接文件; 文件系统中的每个文件都与唯一的 inode 相关联,inode 存储了文件的元数据和数据块的地址,文件名与 inode 之间的链接关系称为硬链接或软链接。 硬链接文件的创建: ln 被链接文件的…

14-1_Qt 5.9 C++开发指南_网络编程及主机信息查询_HostInfo

Qt 网络模块提供了用于编写 TCP/IP 客户端和服务器端程序的各种类,如用于 TCP 通信的QTcpSocket 和 QTcpServer,用于 UDP 通信的 QUdpSocket,还有用于实现 HTTP、FTP 等普通网络协议的高级类如 QNetworkRequest,QNetworkReply 和Q…

【英杰送书-第六期】spring—加载监听器

前几天的时候,项目里有一个需求,需要一个开关控制代码中是否执行一段逻辑,于是理所当然的在yml文件中配置了一个属性作为开关,再配合nacos就可以随时改变这个值达到我们的目的,yml文件中是这样写的: switc…

SpringMVC学习记录

SpringMVC技术与servlet技术功能等同,均属于web层开发技术 SpringMVC简介 SpringMVC概述 SpringMVC是一种基于Java实现MIVC模型的轻量级web框架 优点 使用简单,开发便捷(相比于servlet)灵活性强 SpringMVC是一种表现层框架技术 Spring…

万字长文解析深度学习中的术语

引言 新手在学习深度学习或者在看深度学习论文的过程中,有不少专业词汇,软件翻译不出来,就算是翻译出来也看不懂,因为不少术语是借用其他学科的概念,这里整理了一些在深度学习中常见的术语,并对一些概念进…

一文读懂Etcd及其原理和应用场景

文章目录 0. 前言1. ETCD的概念和设计2.ETCD的命令示例查看ETCD的版本信息列出ETCD集群中的成员检查ETCD集群的健康状态获取指定key的值设置指定key的值删除指定key及其对应的值监控指定key的变化将ETCD的数据备份到指定文件中 3. ETCD的使用场景4. ETCD的优缺点5. 配置文件示例…

Spring boot 集成 Skywalking 配置 || Skywalking 打不开【已解决】

一、Skywalking官网 Apache SkyWalking 1.下载Skywalking APM (如果下载最新的,双击打开闪退,选老点的版本) 2. 下载 Skywalking Agents 如果下载太慢,建议复制下载链接,然后用下载器下载,比…

Python因AI水涨船高,AIGC已经造出了一个全新的赛道 |2023中国开发者调查报告出炉

CSDN、《新程序员》在去年ChatGPT横空出世之后,发起了一份围绕开发者现状、人工智能和物联网、云原生、数据库、操作系统、芯片、开源的深度调查问卷,此问卷也融合了各个领域对生成式 AI 的应用进展,最终于近日正式形成一份长达 125 页的《20…

20230802-下载并安装android-studio

下载 android-studio 安装包 https://developer.android.google.cn/studio/ 安装android-studio 双击安装包 D:\Android Studio

Android Studio新版本logcat过滤说明

按包名过滤 //输入package:(输入一个p就会有提示的) ,后面加上包名 比如: package:com.xal.runcontrol package:包名可以完整或者输部分包名即可 package:包名需要输完整准确 package~:正则表达式过滤 不了解正则表达式的可以参考&#…

Linux 操作系统 Red Hat Enterprise Linux 安装教程

文章目录 笔者的操作环境: 制作环境: Win32 Disk Imager 1.0.0 Windows 10 教育版 ISO: Red Hat Enterprise Linux 9.2 x86_64 Red Hat Enterprise Linux(RHEL)是一种 Linux 操作系统。安装此操作系统的难题在于&a…

docker部署jenkins且jenkins中使用docker去部署项目

docker部署jenkins且jenkins中使用docker去部署项目 1、确定版本 2.346.1是最后一个支持jdk8的 2、编写docker-compose.yml并执行 在这个目录中新增data文件夹,注意data是用来跟docker中的文件进行映射的 docker-compose.yml version: "3.1" service…

软件测试这个行业究竟能做到多少岁?35岁真的是一个坎?

前言 在国内,软件测试行业是近10多年来随着互联网的飞速发展逐步兴起来的。 随着行业的发展,测试市场的人才缺口也越来越大,能够提供的就业机会也就越来越多,所以很多人都意气风发地投身到测试行业之中,憧憬这自己在这…

K8s影响Pod调度和Deployment

5.应用升级回滚和弹性伸缩

从Spring的角度看Memcached和Redis及操作

目录 Memcached和Redis的区别 适用场景 Memcached配置使用 Redis配置使用 在SpringBoot的框架里,有直连Redis的SDK却没有Memcached的,可见相比地位。不过各有各的适应场景,Redis这个单线程模型确实非常强。 Memcached和Redis的区别 共同…

【JavaWeb】 三大组件之过滤器 Filter

🎄欢迎来到边境矢梦的csdn博文,本文主要讲解Java 中三大组件之过滤器 Filter的相关知识🎄 🌈我是边境矢梦,一个正在为秋招和算法竞赛做准备的学生🌈 🎆喜欢的朋友可以关注一下🫰&…