opencv 31-图像平滑处理-方框滤波cv2.boxFilter()

news2025/1/9 2:25:30

方框滤波(Box Filtering)是一种简单的图像平滑处理方法,它主要用于去除图像中的噪声和减少细节,同时保持图像的整体亮度分布。

方框滤波的原理很简单:对于图像中的每个像素,将其周围的一个固定大小的邻域内的像素值取平均,然后将这个平均值赋值给当前像素。这个邻域通常是一个正方形,称为方框或窗口。方框滤波相当于用一个均值滤波器对图像进行滤波。

与均值滤波的不同在于,方框滤波不会计算像素均值。
在均值滤波中,滤波结果的像素值是任意一个点的邻域平均值,等于各邻域像素值之和除以邻域面积。

而在方框滤波中,可以自由选择是否对均值滤波的结果进行归一化,即可以自由选择滤波结果是邻域像素值之和的平均值,还是邻域像素值之和

我们以 5×5 的邻域为例,在进行方框滤波时,如果计算的是邻域像素值的均值,则滤波关系如图 7-15 所示。

在这里插入图片描述

仍然以 5×5 的邻域为例,在进行方框滤波时,如果计算的是邻域像素值之和,则滤波关系
如图 7-16 所示。
在这里插入图片描述

根据上述关系,如果计算的是邻域像素值的均值,则使用的卷积核为:

在这里插入图片描述
如果计算的是邻域像素值之和,则使用的卷积核为:

在这里插入图片描述
在 OpenCV 中,实现方框滤波的函数是 cv2.boxFilter(),其语法格式为:

dst = cv2.boxFilter( src, ddepth, ksize, anchor, normalize, borderType
)

式中:
 dst 是返回值,表示进行方框滤波后得到的处理结果。

 src 是需要处理的图像,即原始图像。它能够有任意数量的通道,并能对各个通道独立处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。

 ddepth 是处理结果图像的图像深度,一般使用-1 表示与原始图像使用相同的图像深度。

 ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中所选择的邻域图像的高度和宽度。

例如,滤波核的值可以为(3,3),表示以 3×3 大小的邻域均值作为图像均值滤波处理的结果,如下式所示。

在这里插入图片描述
 anchor 是锚点,其默认值是(-1, -1),表示当前计算均值的点位于核的中心点位置。
该值使用默认值即可,在特殊情况下可以指定不同的点作为锚点。

 normalize 表示在滤波时是否进行归一化(这里指将计算结果规范化为当前像素值范围内的值)处理,该参数是一个逻辑值,可能为真(值为 1)或假(值为 0)。

 当参数 normalize=1 时,表示要进行归一化处理,要用邻域像素值的和除以面积。
 当参数 normalize=0 时,表示不需要进行归一化处理,直接使用邻域像素值的和。

通常情况下,针对方框滤波,卷积核可以表示为:
在这里插入图片描述
上述对应关系为:

在这里插入图片描述
例如,针对 5×5 邻域,当参数 normalize=1 时,要进行归一化处理,此时计算的就是均值滤波。
这种情况下,函数 cv2.boxFilter()和函数 cv2.blur()的作用是一样的。

此时,对应的卷积核为:

在这里插入图片描述
同样针对 5×5 邻域,当参数 normalize=0 时,不进行归一化处理,此时滤波计算的是邻域像素值之和,使用的卷积核是:

在这里插入图片描述
当 normalize=0 时,因为不进行归一化处理,因此滤波得到的值很可能超过当前像素值范围的最大值,从而被截断为最大值。

这样,就会得到一幅纯白色的图像。

 borderType 是边界样式,该值决定了以何种方式处理边界。

通常情况下,在使用方框滤波函数时,对于参数 anchor、normalize 和 borderType,直接采
用其默认值即可。因此,函数 cv2.boxFilter()的常用形式为:

dst = cv2.boxFilter( src, ddepth, ksize )

实验1: 针对噪声图像,对其进行方框滤波,显示滤波结果

代码如下:

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(5,5))
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:
在本例中,方框滤波函数对 normalize 参数使用了默认值。在默认情况下,该值为 1,表示要进行归一化处理。也就是说,本例中使用的是 normalize 为默认值 True 的 cv2.boxFilter()函数,
此时它和函数 cv2.blur()的滤波结果是完全相同的。如图 所示,左图是原始图像,右图是方框滤波结果图像
在这里插入图片描述

实验2:针对噪声图像,在方框滤波函数 cv2.boxFilter()内将参数 normalize 的值设置为 0,显示滤波处理结果。

代码如下:

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(5,5),normalize=0)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

在本例中,没有对图像进行归一化处理。在进行滤波时,计算的是 5×5 邻域的像素值之和,图像的像素值基本都会超过当前像素值的最大值 255。因此,最后得到的图像接近纯白色,部分点处有颜色。部分点有颜色是因为这些点周边邻域的像素值均较小,邻域像素值在相加后仍然小于 255。

此时的图像滤波结果如图所示,左图是原始图像,右图是方框滤波后得到的处理结果
在这里插入图片描述

实验3:针对噪声图像,使用方框滤波函数 cv2.boxFilter()去噪,将参数 normalize 的值设置为 0,将卷积核的大小设置为 2×2,显示滤波结果

代码如下:

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(2,2),normalize=0)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

在本例中,卷积核大小为 2×2,参数 normalize=0。因此,本例中方框滤波计算的是 2×2邻域的像素值之和,四个像素值的和不一定大于 255,因此在计算结果图像中有部分像素点不是白色。如图 所示,左图是原始图像,右图是方框滤波处理结果。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/827009.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DP-GAN剩余代码

在前面计算完损失后,该进行更新: 1:netEMA是模型的生成器: 遍历生成器的state_dict,将每一个键对应的值乘以EMA_decay。 接着根据当前迭代步数计算num_upd,每1000,2500,10000代倍数就执行一次。 当num…

MyBatis查询数据库1(概念+创建项目+基础交互)

目录 1.MyBatis是什么? 2.为什么学习MyBatis? 3. 怎么学 MyBatis 4.第⼀个MyBatis查询 4.1 添加MyBatis框架支持 4.1.1老项目添加MyBatis 4.1.2 新项目添加MyBatis 4.2 配置连接字符串和MyBatis 4.2.1 配置连接字符串 4.2.2 配置 MyBatis 中的…

PHM的设备故障模型如何构建?

预测性维护与健康管理(Prognostics Health Management,PHM)是现代工业中的一个关键概念,它旨在通过使用数据和先进的分析技术,实现设备故障的早期预测和预防,从而最大限度地提高设备的可用性和可靠性。而在…

DAY1,C高级(命令,Linux的文件系统,软、硬链接文件)

1.今日思维导图; 2.创建链接文件; 文件系统中的每个文件都与唯一的 inode 相关联,inode 存储了文件的元数据和数据块的地址,文件名与 inode 之间的链接关系称为硬链接或软链接。 硬链接文件的创建: ln 被链接文件的…

14-1_Qt 5.9 C++开发指南_网络编程及主机信息查询_HostInfo

Qt 网络模块提供了用于编写 TCP/IP 客户端和服务器端程序的各种类,如用于 TCP 通信的QTcpSocket 和 QTcpServer,用于 UDP 通信的 QUdpSocket,还有用于实现 HTTP、FTP 等普通网络协议的高级类如 QNetworkRequest,QNetworkReply 和Q…

【英杰送书-第六期】spring—加载监听器

前几天的时候,项目里有一个需求,需要一个开关控制代码中是否执行一段逻辑,于是理所当然的在yml文件中配置了一个属性作为开关,再配合nacos就可以随时改变这个值达到我们的目的,yml文件中是这样写的: switc…

SpringMVC学习记录

SpringMVC技术与servlet技术功能等同,均属于web层开发技术 SpringMVC简介 SpringMVC概述 SpringMVC是一种基于Java实现MIVC模型的轻量级web框架 优点 使用简单,开发便捷(相比于servlet)灵活性强 SpringMVC是一种表现层框架技术 Spring…

万字长文解析深度学习中的术语

引言 新手在学习深度学习或者在看深度学习论文的过程中,有不少专业词汇,软件翻译不出来,就算是翻译出来也看不懂,因为不少术语是借用其他学科的概念,这里整理了一些在深度学习中常见的术语,并对一些概念进…

一文读懂Etcd及其原理和应用场景

文章目录 0. 前言1. ETCD的概念和设计2.ETCD的命令示例查看ETCD的版本信息列出ETCD集群中的成员检查ETCD集群的健康状态获取指定key的值设置指定key的值删除指定key及其对应的值监控指定key的变化将ETCD的数据备份到指定文件中 3. ETCD的使用场景4. ETCD的优缺点5. 配置文件示例…

Spring boot 集成 Skywalking 配置 || Skywalking 打不开【已解决】

一、Skywalking官网 Apache SkyWalking 1.下载Skywalking APM (如果下载最新的,双击打开闪退,选老点的版本) 2. 下载 Skywalking Agents 如果下载太慢,建议复制下载链接,然后用下载器下载,比…

Python因AI水涨船高,AIGC已经造出了一个全新的赛道 |2023中国开发者调查报告出炉

CSDN、《新程序员》在去年ChatGPT横空出世之后,发起了一份围绕开发者现状、人工智能和物联网、云原生、数据库、操作系统、芯片、开源的深度调查问卷,此问卷也融合了各个领域对生成式 AI 的应用进展,最终于近日正式形成一份长达 125 页的《20…

20230802-下载并安装android-studio

下载 android-studio 安装包 https://developer.android.google.cn/studio/ 安装android-studio 双击安装包 D:\Android Studio

Android Studio新版本logcat过滤说明

按包名过滤 //输入package:(输入一个p就会有提示的) ,后面加上包名 比如: package:com.xal.runcontrol package:包名可以完整或者输部分包名即可 package:包名需要输完整准确 package~:正则表达式过滤 不了解正则表达式的可以参考&#…

Linux 操作系统 Red Hat Enterprise Linux 安装教程

文章目录 笔者的操作环境: 制作环境: Win32 Disk Imager 1.0.0 Windows 10 教育版 ISO: Red Hat Enterprise Linux 9.2 x86_64 Red Hat Enterprise Linux(RHEL)是一种 Linux 操作系统。安装此操作系统的难题在于&a…

docker部署jenkins且jenkins中使用docker去部署项目

docker部署jenkins且jenkins中使用docker去部署项目 1、确定版本 2.346.1是最后一个支持jdk8的 2、编写docker-compose.yml并执行 在这个目录中新增data文件夹,注意data是用来跟docker中的文件进行映射的 docker-compose.yml version: "3.1" service…

软件测试这个行业究竟能做到多少岁?35岁真的是一个坎?

前言 在国内,软件测试行业是近10多年来随着互联网的飞速发展逐步兴起来的。 随着行业的发展,测试市场的人才缺口也越来越大,能够提供的就业机会也就越来越多,所以很多人都意气风发地投身到测试行业之中,憧憬这自己在这…

K8s影响Pod调度和Deployment

5.应用升级回滚和弹性伸缩

从Spring的角度看Memcached和Redis及操作

目录 Memcached和Redis的区别 适用场景 Memcached配置使用 Redis配置使用 在SpringBoot的框架里,有直连Redis的SDK却没有Memcached的,可见相比地位。不过各有各的适应场景,Redis这个单线程模型确实非常强。 Memcached和Redis的区别 共同…

【JavaWeb】 三大组件之过滤器 Filter

🎄欢迎来到边境矢梦的csdn博文,本文主要讲解Java 中三大组件之过滤器 Filter的相关知识🎄 🌈我是边境矢梦,一个正在为秋招和算法竞赛做准备的学生🌈 🎆喜欢的朋友可以关注一下🫰&…

python 实现k-means聚类算法 银行客户分组画像实战(超详细,附源码)

想要数据集请点赞关注收藏后评论区留言留下QQ邮箱 k-means具体是什么这里就不再赘述,详情可以参见我这篇博客 k-means 问题描述:银行对客户信息进行采集,获得了200位客户的数据,客户特征包括以下四个1:社保号码 2&am…