2023年第四届“华数杯”数学建模思路 - 复盘:校园消费行为分析

news2024/9/23 15:26:13

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5

work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):
    work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())
    # 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):
    x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):
    unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())
    # 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): 
    x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count


# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money


# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')

data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)


 分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()

# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']


# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/823479.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LEARNING TO EXPLORE USING ACTIVE NEURAL SLAM 论文阅读

论文信息 题目&#xff1a;LEARNING TO EXPLORE USING ACTIVE NEURAL SLAM 作者&#xff1a;Devendra Singh Chaplot, Dhiraj Gandhi 项目地址&#xff1a;https://devendrachaplot.github.io/projects/Neural-SLAM 代码地址&#xff1a;https://github.com/devendrachaplot/N…

python 统计所有的 仓库 提交者的提交次数

字典去重 YYDS 然后再写入excel 表 yyds #!/bin/env python3 from git.repo import Repo import os import pandas as pdspath "/home/labstation/workqueue/sw" url "git10.0.128.128" date [str(x) for x in range(202307, 202308)] datefmt "%…

用html+javascript打造公文一键排版系统11:改进单一附件说明排版

一、用htmljavascript打造公文一键排版系统10中的一个bug 在 用htmljavascript打造公文一键排版系统10&#xff1a;单一附件说明排版 中&#xff0c;我们对附件说明的排版函数是&#xff1a; function setAtttDescFmt(p) {var t p;var a ;if (-1 ! t.indexOf(:))//是半角冒…

SQL注入之sqlmap

SQL注入之sqlmap 6.1 SQL注入之sqlmap安装 sqlmap简介&#xff1a; sqlmap是一个自动化的SQL注入工具&#xff0c;其主要功能是扫描&#xff0c;发现并利用给定的URL的SQL注入漏洞&#xff0c;目前支持的数据库是MS-SQL,MYSQL,ORACLE和POSTGRESQL。SQLMAP采用四种独特的SQL注…

Moonbeam:开发者的多链教科书

了解波卡的技术架构&#xff0c;只需掌握3个关键词&#xff1a; Relay Chain&#xff08;中继链&#xff09;&#xff1a;Polkadot将自身视作多核计算机&#xff0c;承载区块链底层安全架构的辐射中心。Parachain&#xff08;平行链&#xff09;&#xff1a;在“Layer 0”架构…

现货白银投资中的头寸是什么

头寸是现货白银市场上的一个投资术语。建立头寸就是建仓的意思&#xff0c;投资者所持有的头寸也叫敞口。投资如果看涨做多&#xff0c;就是持有多头头寸&#xff0c;如果看跌做空&#xff0c;就持有空头头寸。计算交易的头寸的大小并不复杂&#xff0c;关键是在于投资者要设定…

Linux(New)---历史与虚拟机安装CentOS7.6

前言 其实之前已经学过一遍Linux了&#xff0c;但是感觉学的不够深入和成体系&#xff08;某节的教学视频不完整&#xff09;&#xff0c;所以这次打算完整的跟一遍韩顺平老师的Linux课程&#xff0c;Linux从入门到精通&#xff0c;就从现在开始&#xff01; Linux历史概述 L…

【音频分离】demucs V3的环境搭建及训练(window)

文章目录 一、环境搭建&#xff08;1&#xff09;新建虚拟环境&#xff0c;并进入&#xff08;2&#xff09;安装pyTorch&#xff08;3&#xff09;进入代码文件夹&#xff0c;批量安装包&#xff08;4&#xff09;安装其他需要的包 二、数据集准备&#xff08;1&#xff09;下…

flask中的flask-login

flask中的flask-login 在 Flask 中&#xff0c;用户认证通常是通过使用扩展库&#xff08;例如 Flask-Login、Flask-HTTPAuth 或 Flask-Security&#xff09;来实现的。 本文详细地解释下 Flask 中的用户认证。这里是用 Flask-Login 插件为例&#xff0c;这是一个处理用户会话…

count(列名) ,count(1)与count(*) 有何区别?

Mysql版本&#xff1a;8.0.26 可视化客户端&#xff1a;sql yog 文章目录 一、Mysql之count函数简介二、count(列名) &#xff0c;count(常量)与count(*) 有何区别&#xff1f;2.1 统计字段上的区别2.2 执行效率上的区别 一、Mysql之count函数简介 &#x1f449;表达式 COUNT(…

DP-GAN损失

在前面我们看了生成器和判别器的组成。 生成器损失公式&#xff1a; 首先将fake image 和真实的 image输入到判别器中&#xff1a; 接着看第一个损失&#xff1a;参数分别为fake image经过判别器的输出mask&#xff0c;和真实的label进行损失计算。对应于&#xff1a; 其中l…

动态规划之树形DP

动态规划之树形DP 树形DP何为树形DP 树形DP例题HDU-1520 Anniversary partyHDU-2196 Computer834. 树中距离之和 树形DP 何为树形DP 树形DP是指在“树”这种数据结构上进行的动态规划&#xff1a;给出一颗树&#xff0c;要求以最少的代价&#xff08;或取得最大收益&#xff…

Vue-前端工程化

前后端开发模式 早期开发是前后端混合开发 即前后端代码写在一个工程中 前端写完给后端&#xff0c;后端发现问题反映给前端&#xff0c;后端就需要懂全栈 YAPI&#xff08;接口在线管理平台&#xff09; 一个接口管理和编辑平台 现在已经没有在维护了 还有mock服务 就是根据…

leetcode 912.排序数组

⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;排序数组 思路&#xff1a; 此题如果使用冒泡插入选择这些时间复杂度 O ( N 2 ) O(N^2) O(N2) 的算法会超时&#xff0c;使用快排 优化也过不去&#xff0c;因为里面有一个测试用例全是 2 即使加了三数取中也会是 O (…

Java I/O模型

目录 一、介绍I/O 二、Java中常见的I/O 1.BIO&#xff0c;同步阻塞IO 2.NIO&#xff0c;同步非阻塞IO 3.AIO&#xff0c;异步I/O 三、三种IO的区别 一、介绍I/O 1.I/O&#xff08;Input/Output&#xff09;的即为输入输出。 2.从计算机的角度来看&#xff1a;在冯诺伊曼…

Vector - CAPL - 诊断模块函数(连接配置)

CanTpGetMaximumReceiveLength & CanTpSetMaximumReceiveLength 功能&#xff1a;获取或设置该节点接收数据时可接受的最大长度&#xff1b;如果指示较长数据块的第一帧到达&#xff0c;则溢出 (FC.Ovflw) 流状态流控制帧将被发送回发送器。 注意&#xff1a;CANoe 支持高…

NOsql之MongoDB入门分享

目录 一、MongoDB简介 1、概念理解 2、yum安装部署 3、二进制安装部署 4、配置文件解析 二、MongoDB基本管理 1、登录操作 2、管理命令 3、用户管理 一、MongoDB简介 1、概念理解 关系型数据库&#xff08;RDBMS:Relational Database Management System) MySql、Ora…

YOLO实战1.2-YOLOV5人脸检测

上个项目实现了车牌的检测和识别&#xff0c;这次实现一个简单的人脸检测(加口罩)项目 一.数据集 使用1200张图片进行训练 400张进行测试 二.各项指标 三.效果

SpringCloud Gateway 在微服务架构下的最佳实践

作者&#xff1a;徐靖峰&#xff08;岛风&#xff09; 前言 本文整理自云原生技术实践营广州站 Meetup 的分享&#xff0c;其中的经验来自于我们团队开发的阿里云 CSB 2.0 这款产品&#xff0c;其基于开源 SpringCloud Gateway 开发&#xff0c;在完全兼容开源用法的前提下&a…

云服务器开放端口

文章目录 云服务器开放端口1. 云服务器后台开放端口2. linux系统开放端口2.1 查看防火墙状态2.2 开启防火墙2.3 开放端口&#xff08;以端口2000为例&#xff09;2.4 重新载入防火墙2.5 查看已开放的端口2.6 重启防火墙2.7 关闭端口 云服务器开放端口 本篇文章主要以阿里云服务…