2023年第四届“华数杯”数学建模思路 - 案例:FPTree-频繁模式树算法

news2025/1/13 10:23:56

## 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/823023.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Databend 开源周报第 104 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 从 Kafka 载入数…

内存“银行”

项目介绍 本项目实现的是一个内存银行&#xff0c;它的原型是Google的一个开源项目tcmalloc&#xff0c;tcmalloc全称Thread-Caching Malloc&#xff0c;即线程缓存的malloc&#xff0c;实现了高效的多线程内存管理&#xff0c;用于替换系统的内存分配相关函数malloc和free。 有…

Linux第四章之权限理解

一、Linux用户的概念 Linux下有两种用户&#xff1a;超级用户&#xff08;root&#xff09;、普通用户。 超级用户&#xff1a;可以再linux系统下做任何事情&#xff0c;不受限制普通用户&#xff1a;在linux下做有限的事情。 超级用户的命令提示符是“#”&#xff0c;普通用户…

2023年第四届“华数杯”数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; 最短时间生产计划模型 该模型出现在好几个竞赛赛题上&#x…

【React】搭建React项目

最近自己在尝试搭建react项目&#xff0c;其实react项目搭建没有想象中的那么复杂&#xff0c;我们只需要使用一个命令把React架子搭建好&#xff0c;其他的依赖可以根据具体的需求去安装&#xff0c;比如AntDesignMobile的UI框架&#xff0c;执行npm install antd-mobile --sa…

什么是注意力机制?注意力机制的计算规则

我们观察事物时&#xff0c;之所以能够快速判断一种事物(当然允许判断是错误的)&#xff0c;是因为我们大脑能够很快把注意力放在事物最具有辨识度的部分从而作出判断&#xff0c;而并非是从头到尾的观察一遍事物后&#xff0c;才能有判断结果&#xff0c;正是基于这样的理论&a…

Stable Diffusion VAE:改善图像质量的原理、选型与使用指南

VAE Stable Diffusion&#xff08;稳定扩散&#xff09;是一种用于生成模型的算法&#xff0c;结合了变分自编码器&#xff08;Variational Autoencoder&#xff0c;VAE&#xff09;和扩散生成网络&#xff08;Diffusion Generative Network&#xff09;的思想。它通过对变分自…

【贪心+01背包】Tower

这是个很经典的问题 Tower - 洛谷 题意&#xff1a; 思路&#xff1a; 首先可以确定是个背包而且肯定要排序&#xff0c;但是根据什么排序不确定 因为交换相邻两个箱子只有对自身产生影响&#xff0c;所以可以贪心地考虑这两个箱子如何摆最优&#xff0c;而又因为本身上面的…

无人机编队路径规划算法的Matlab实现

室内多智能体协同控制是指在密闭空间内的各个无人机及无人车在运动时能够相互之间保持一定的相对距离&#xff0c;并在速度及位置上按照预设路线或命令进行运动的过程。本平台的多智能体协同定位采用光学运动捕捉技术&#xff0c;并通过WiFi网络实现多机、多车间的通信&#xf…

13-1_Qt 5.9 C++开发指南_多线程及QThread 创建多线程程序_ThreadSignal

一个应用程序一般只有一个线程&#xff0c;一个线程内的操作是顺序执行的&#xff0c;如果有某个比较消耗时间的计算或操作&#xff0c;比如网络通信中的文件传输&#xff0c;在一个线程内操作时&#xff0c;用户界面就可能会冻结而不能及时响应。这种情况下&#xff0c;可以创…

2023年第四届“华数杯”数学建模思路 - 案例:感知机原理剖析及实现

# 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、感知机的直观理解 感知机应该属于机器学习算法中最简单的一种算法&#xff0c;其原理可以看下图&#xff1a; 比如说我们有一个坐标轴&#xff08;图中的…

火车头伪原创插件怎么用【php源码】

这篇文章主要介绍了儿童学python编程哪个学校好&#xff0c;具有一定借鉴价值&#xff0c;需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获&#xff0c;下面让小编带着大家一起了解一下。 1、python几岁学比较好 python建议8岁到10岁以上的孩子学习&#xff0c;详细介…

聊天系统登录后端实现

定义返回的数据格式 # Restful API from flask import jsonifyclass HttpCode(object):# 响应正常ok 200# 没有登陆错误unloginerror 401# 没有权限错误permissionerror 403# 客户端参数错误paramserror 400# 服务器错误servererror 500def _restful_result(code, messa…

线性代数基础一 行列式

前言 行列式在线性代数中具有非常重要的地位,很多线性代数的问题都可以转化为计算行列式来解决。 集合 集合的表示方法&#xff1a;常用的有列举法和描述法。 列举法&#xff1a;常用于表示有限集合&#xff0c;把集合中的所有元素一一列举出来&#xff0c;写在大括号内&am…

grid map学习笔记3之详解grid_map_pcl库实现point cloud点云转换成grid map栅格地图

文章目录 0 引言1 grid_map_pcl示例1.1 主要文件1.2 示例数据1.3 启动文件1.4 配置文件1.5 主要实现流程1.6 启动示例1.7 示例结果 2 D435i 点云生成栅格地图2.1 D435i 点云文件2.2 修改启动文件2.3 测试和结果2.4 修改配置文件2.5 重新测试和结果 0 引言 grid map学习笔记1已…

海外网红营销:如何利用故事打造独具魅力的品牌形象?

随着全球数字化时代的来临&#xff0c;品牌推广已经从传统的广告宣传方式逐渐转变为更加注重故事性和情感共鸣的营销手段。故事营销在品牌塑造和传播过程中发挥着重要作用&#xff0c;它能够吸引消费者的注意力&#xff0c;加深品牌与受众的情感连接&#xff0c;从而为品牌带来…

uniapp开发微信小程序--自定义顶部导航栏

一、实现效果&#xff1a; 二、代码实现&#xff1a; 1.在pages.json文件中&#xff0c;单页面定义导航栏&#xff0c;添加以下代码&#xff1a; "navigationStyle": "custom" //自定义导航栏如图所示&#xff1a; 2.在components文件夹下&#xff0c;…

用于毫米波天线的新型无卤素超低传输损耗多层电路板R-5410

3月3日消息&#xff0c;松下公司宣布&#xff0c;其工业解决方案公司已经实现了R-5410的商业化&#xff0c;这是一种无卤素、超低传输损耗的多层电路板&#xff08;MLCB&#xff09;材料&#xff0c;适用于毫米波天线。将于2021年3月开始量产。 毫米波雷达是汽车、通信等行业的…

uC-OS2 V2.93 STM32L476 移植:环境搭建篇

前言 uC-OS2 是比较经典的 RTOS&#xff0c;如今软件授权已经改为 Apache License Version 2.0&#xff0c;意味着可以免费商用了 当前 uC-OS2 的最新版本是&#xff1a; V2.93&#xff0c;打算研究一下 RTOS 的设计思想&#xff0c;所以想在已有的开发板&#xff1a;NUCLEO-L…

Mybatis,Spring,SpringMVC项目创建

先做一些设置 file——setting——maven 创建项目maven项目 主方法下和java平行 创建完成 接下里就是导依赖了 spring和mybatis创建文件是一样的&#xff0c;就是配置不一样 SpringMVC前面和Mybatis和Spring是一样的&#xff0c;后面需要web 然后是new——projectStructure …