什么是注意力机制?注意力机制的计算规则

news2025/1/13 10:30:34

我们观察事物时,之所以能够快速判断一种事物(当然允许判断是错误的),是因为我们大脑能够很快把注意力放在事物最具有辨识度的部分从而作出判断,而并非是从头到尾的观察一遍事物后,才能有判断结果,正是基于这样的理论,就产生了注意力机制。

什么是注意力计算规则:

它需要三个指定的输入Q(query),K(key),V(value),然后通过计算公式得到注意力的结果,这个结果代表query在key和value作用下的注意力表示.当输入的Q=K=V时,称作自注意力计算规则。

常见的注意力计算规则:

|| ·将Q,K进行纵轴拼接,做一次线性变化,再使用softmax处理获得结果最后与V做张量乘法。

在这里插入图片描述

|| ·将Q,K进行纵轴拼接,做一次线性变化后再使用tanh函数激活,然后再进行内部求和,最后使用softmax处理获得结果再与V做张量乘法.

在这里插入图片描述

|| ·将Q与K的转置做点积运算,然后除以一个缩放系数再使用softmax处理获得结果最后与V做张量乘法。

在这里插入图片描述

说明:当注意力权重矩阵和V都是三维张量且第一维代表为batch条数时, 则做bmm运算.bmm是一种特殊的张量乘法运算。

bmm运算演示:

# 如果参数1形状是(b × n × m), 参数2形状是(b × m × p), 则输出为(b × n × p)
>>> input = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(input, mat2)
>>> res.size()
torch.Size([10, 3, 5])

注意力机制的作用

在解码器端的注意力机制:能够根据模型目标有效的聚焦编码器的输出结果,当其作为解码器的输入时提升效果,改善以往编码器输出是单一定长张量,无法存储过多信息的情况。

在编码器端的注意力机制:主要解决表征问题,相当于特征提取过程,得到输入的注意力表示。般使用自注意力(self-attention)。

注意力机制实现步骤

第一步:根据注意力计算规则,对Q,K,V进行相应的计算

第二步:根据第一步采用的计算方法,如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接,如果是转置点积一般是自注意力,Q与V相同,则不需要进行与Q的拼接

第三步:最后为了使整个attention机制按照指定尺寸输出,使用线性层作用在第二步的结果上做个线性变换,得到最终对Q的注意力表示

常见注意力机制的代码分析:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Attn(nn.Module):
    def __init__(self, query_size, key_size, value_size1, value_size2, output_size):
        """初始化函数中的参数有5个, query_size代表query的最后一维大小
           key_size代表key的最后一维大小, value_size1代表value的导数第二维大小, 
           value = (1, value_size1, value_size2)
           value_size2代表value的倒数第一维大小, output_size输出的最后一维大小"""
        super(Attn, self).__init__()
        # 将以下参数传入类中
        self.query_size = query_size
        self.key_size = key_size
        self.value_size1 = value_size1
        self.value_size2 = value_size2
        self.output_size = output_size

        # 初始化注意力机制实现第一步中需要的线性层.
        self.attn = nn.Linear(self.query_size + self.key_size, value_size1)

        # 初始化注意力机制实现第三步中需要的线性层.
        self.attn_combine = nn.Linear(self.query_size + value_size2, output_size)


    def forward(self, Q, K, V):
        """forward函数的输入参数有三个, 分别是Q, K, V, 根据模型训练常识, 输入给Attion机制的
           张量一般情况都是三维张量, 因此这里也假设Q, K, V都是三维张量"""

        # 第一步, 按照计算规则进行计算, 
        # 我们采用常见的第一种计算规则
        # 将Q,K进行纵轴拼接, 做一次线性变化, 最后使用softmax处理获得结果
        attn_weights = F.softmax(
            self.attn(torch.cat((Q[0], K[0]), 1)), dim=1)

        # 然后进行第一步的后半部分, 将得到的权重矩阵与V做矩阵乘法计算, 
        # 当二者都是三维张量且第一维代表为batch条数时, 则做bmm运算
        attn_applied = torch.bmm(attn_weights.unsqueeze(0), V)

        # 之后进行第二步, 通过取[0]是用来降维, 根据第一步采用的计算方法, 
        # 需要将Q与第一步的计算结果再进行拼接
        output = torch.cat((Q[0], attn_applied[0]), 1)

        # 最后是第三步, 使用线性层作用在第三步的结果上做一个线性变换并扩展维度,得到输出
        # 因为要保证输出也是三维张量, 因此使用unsqueeze(0)扩展维度
        output = self.attn_combine(output).unsqueeze(0)
        return output, attn_weights

调用:

query_size = 32
key_size = 32
value_size1 = 32
value_size2 = 64
output_size = 64
attn = Attn(query_size, key_size, value_size1, value_size2, output_size)
Q = torch.randn(1,1,32)
K = torch.randn(1,1,32)
V = torch.randn(1,32,64)
out = attn(Q, K ,V)
print(out[0])
print(out[1])

输出效果:

tensor([[[ 0.4477, -0.0500, -0.2277, -0.3168, -8.4096, -0.5982, 0.1548,
-8.8771, -8.0951. 8.1833. 8.3128. 8.1260, 8.4420. 8.8495.
-0.7774, -0.0995, 0.2629, 0.4957, 1.0922, 0.1428, 0.3024.
-0.2646, -0.0265, 0.0632, 0.3951, 0.1583, 0.1130, 0.5500,
-0.1887, -0.2816, -0.3800, -0.5741, 0.1342, 0.0244, -0.2217,
0.1544, 0.1865, -0.2019, 0.4090, -0.4762, 0.3677, -0.2553,
-0.5199, 0.2290, -0.4407, 0.0663, -8.0182, -8.2168, 0.0913,
-0.2340, 0.1924, -0.3687, 0.1508, 0.3618, -0.0113, 0.2864.
-0.1929, -0.6821, 0.0951, 0.1335, 0.3560, -0.3215
,0.6461,
0.1532]]],grad_fn=<UnsqueezeBackward0>)
tensor([[0.0395, 0.0342, 0.0200, 0.0471, 0.0177, 0.0209, 0.0244, 0.0465, 0.0346,
0.0378, 0.0282, 0.0214, 0.0135, 0.0419, 0.0926, 0.0123, 0.0177, 0.0187,
0.0166, 0.8225, 0.0234, 0.0284, 0.0151, 0.0239, 0.0132, 0.0439, 0.0507,
0.0419, 8.0352, 8.0392, 8.0546, 0.0224]], grad_fn=<SoftmaxBackward>)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/823011.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Stable Diffusion VAE:改善图像质量的原理、选型与使用指南

VAE Stable Diffusion&#xff08;稳定扩散&#xff09;是一种用于生成模型的算法&#xff0c;结合了变分自编码器&#xff08;Variational Autoencoder&#xff0c;VAE&#xff09;和扩散生成网络&#xff08;Diffusion Generative Network&#xff09;的思想。它通过对变分自…

【贪心+01背包】Tower

这是个很经典的问题 Tower - 洛谷 题意&#xff1a; 思路&#xff1a; 首先可以确定是个背包而且肯定要排序&#xff0c;但是根据什么排序不确定 因为交换相邻两个箱子只有对自身产生影响&#xff0c;所以可以贪心地考虑这两个箱子如何摆最优&#xff0c;而又因为本身上面的…

无人机编队路径规划算法的Matlab实现

室内多智能体协同控制是指在密闭空间内的各个无人机及无人车在运动时能够相互之间保持一定的相对距离&#xff0c;并在速度及位置上按照预设路线或命令进行运动的过程。本平台的多智能体协同定位采用光学运动捕捉技术&#xff0c;并通过WiFi网络实现多机、多车间的通信&#xf…

13-1_Qt 5.9 C++开发指南_多线程及QThread 创建多线程程序_ThreadSignal

一个应用程序一般只有一个线程&#xff0c;一个线程内的操作是顺序执行的&#xff0c;如果有某个比较消耗时间的计算或操作&#xff0c;比如网络通信中的文件传输&#xff0c;在一个线程内操作时&#xff0c;用户界面就可能会冻结而不能及时响应。这种情况下&#xff0c;可以创…

2023年第四届“华数杯”数学建模思路 - 案例:感知机原理剖析及实现

# 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、感知机的直观理解 感知机应该属于机器学习算法中最简单的一种算法&#xff0c;其原理可以看下图&#xff1a; 比如说我们有一个坐标轴&#xff08;图中的…

火车头伪原创插件怎么用【php源码】

这篇文章主要介绍了儿童学python编程哪个学校好&#xff0c;具有一定借鉴价值&#xff0c;需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获&#xff0c;下面让小编带着大家一起了解一下。 1、python几岁学比较好 python建议8岁到10岁以上的孩子学习&#xff0c;详细介…

聊天系统登录后端实现

定义返回的数据格式 # Restful API from flask import jsonifyclass HttpCode(object):# 响应正常ok 200# 没有登陆错误unloginerror 401# 没有权限错误permissionerror 403# 客户端参数错误paramserror 400# 服务器错误servererror 500def _restful_result(code, messa…

线性代数基础一 行列式

前言 行列式在线性代数中具有非常重要的地位,很多线性代数的问题都可以转化为计算行列式来解决。 集合 集合的表示方法&#xff1a;常用的有列举法和描述法。 列举法&#xff1a;常用于表示有限集合&#xff0c;把集合中的所有元素一一列举出来&#xff0c;写在大括号内&am…

grid map学习笔记3之详解grid_map_pcl库实现point cloud点云转换成grid map栅格地图

文章目录 0 引言1 grid_map_pcl示例1.1 主要文件1.2 示例数据1.3 启动文件1.4 配置文件1.5 主要实现流程1.6 启动示例1.7 示例结果 2 D435i 点云生成栅格地图2.1 D435i 点云文件2.2 修改启动文件2.3 测试和结果2.4 修改配置文件2.5 重新测试和结果 0 引言 grid map学习笔记1已…

海外网红营销:如何利用故事打造独具魅力的品牌形象?

随着全球数字化时代的来临&#xff0c;品牌推广已经从传统的广告宣传方式逐渐转变为更加注重故事性和情感共鸣的营销手段。故事营销在品牌塑造和传播过程中发挥着重要作用&#xff0c;它能够吸引消费者的注意力&#xff0c;加深品牌与受众的情感连接&#xff0c;从而为品牌带来…

uniapp开发微信小程序--自定义顶部导航栏

一、实现效果&#xff1a; 二、代码实现&#xff1a; 1.在pages.json文件中&#xff0c;单页面定义导航栏&#xff0c;添加以下代码&#xff1a; "navigationStyle": "custom" //自定义导航栏如图所示&#xff1a; 2.在components文件夹下&#xff0c;…

用于毫米波天线的新型无卤素超低传输损耗多层电路板R-5410

3月3日消息&#xff0c;松下公司宣布&#xff0c;其工业解决方案公司已经实现了R-5410的商业化&#xff0c;这是一种无卤素、超低传输损耗的多层电路板&#xff08;MLCB&#xff09;材料&#xff0c;适用于毫米波天线。将于2021年3月开始量产。 毫米波雷达是汽车、通信等行业的…

uC-OS2 V2.93 STM32L476 移植:环境搭建篇

前言 uC-OS2 是比较经典的 RTOS&#xff0c;如今软件授权已经改为 Apache License Version 2.0&#xff0c;意味着可以免费商用了 当前 uC-OS2 的最新版本是&#xff1a; V2.93&#xff0c;打算研究一下 RTOS 的设计思想&#xff0c;所以想在已有的开发板&#xff1a;NUCLEO-L…

Mybatis,Spring,SpringMVC项目创建

先做一些设置 file——setting——maven 创建项目maven项目 主方法下和java平行 创建完成 接下里就是导依赖了 spring和mybatis创建文件是一样的&#xff0c;就是配置不一样 SpringMVC前面和Mybatis和Spring是一样的&#xff0c;后面需要web 然后是new——projectStructure …

【数字IC基础】从触发器到亚稳态

从触发器到亚稳态 单稳态和双稳态三态门单稳态电路双稳态电路 锁存器SR锁存器 触发器电平触发的触发器SR触发器D锁存器&#xff08;电平触发的D触发器&#xff09; 边沿触发的触发器边沿触发 D 触发器脉冲触发的触发器 建立时间和保持时间恢复时间和去除时间亚稳态亚稳态的产生…

C++ | 哈希表的实现与unordered_set/unordered_map的封装

目录 前言 一、哈希 1、哈希的概念 2、哈希函数 &#xff08;1&#xff09;直接定址法 &#xff08;2&#xff09;除留余数法 &#xff08;3&#xff09;平方取中法&#xff08;了解&#xff09; &#xff08;4&#xff09;随机数法&#xff08;了解&#xff09; 3、哈…

.net 6升级.net7 容器报错is not supported on this platform.

一、生成验证码报错 System.PlatformNotSupportedException: System.Drawing.Common is not supported on this platform.Tue, Aug 1 2023 9:57:37 pmat System.Drawing.Image..ctor()Tue, Aug 1 2023 9:57:37 pmat System.Drawing.Bitmap..ctor(Int32 width, Int32 height) 二…

keil使用printf函数重定串口输出,程序卡在Reset_Handler

最近在做国产芯片GD32F103项目&#xff0c;使用printf()函数重定向USART0串口输出&#xff0c;发现程序没有运行&#xff0c;单步调试发现&#xff0c;程序卡在startup_gd32f10x.s文件的Reset_Handler处&#xff0c;记录一下解决方法。 解决办法&#xff1a; 1、引用头文件#in…

Git rebase和merge区别详解

文章目录 变基的基础用法变基过程中的冲突解决冲突后无法push问题更新变基后的代码更有趣的变基用法变基的风险用变基解决变基变基 vs 合并 此文在阅读前需要有一定的git命令基础&#xff0c;若基础尚未掌握&#xff0c;建议先阅读这篇文章Git命令播报详版 在 Git 中整合来自不…

【ChatGPT辅助学Rust | 基础系列 | 函数,语句和表达式】函数的定义,使用和特性

文章标题 简介一&#xff0c;函数1&#xff0c;函数的定义2&#xff0c;函数的调用3&#xff0c;函数的参数4&#xff0c;函数的返回值 二&#xff0c;语句和表达式1&#xff0c;语句2&#xff0c;表达式 总结&#xff1a; 简介 在Rust编程中&#xff0c;函数&#xff0c;语句…