2023年第四届“华数杯”数学建模思路 - 案例:感知机原理剖析及实现

news2024/9/24 15:16:57

# 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

一、感知机的直观理解

感知机应该属于机器学习算法中最简单的一种算法,其原理可以看下图:

在这里插入图片描述

比如说我们有一个坐标轴(图中的黑色线),横的为x1轴,竖的x2轴。图中的每一个点都是由(x1,x2)决定的。如果我们将这张图应用在判断零件是否合格上,x1表示零件长度,x2表示零件质量,坐标轴表示零件的均值长度和均值重量,并且蓝色的为合格产品,黄色为劣质产品,需要剔除。那么很显然如果零件的长度和重量都大于均值,说明这个零件是合格的。也就是在第一象限的所有蓝色点。反之如果两项都小于均值,就是劣质的,比如在第三象限的黄色点。

在预测上很简单,拿到一个新的零件,我们测出它的长度x1,质量x2,如果两项都大于均值,说明零件合格。这就是我们人的人工智能。

那么程序怎么知道长度重量都大于均值的零件就是合格的呢?
或者说

它是怎么学会这个规则的呢?
程序拿到手的是当前图里所有点的信息以及标签,也就是说它知道所有样本x的坐标为(x1, x2),同时它属于蓝色或黄色。对于目前手里的这些点,要是能找到一条直线把它们分开就好了,这样我拿到一个新的零件,知道了它的质量和重量,我就可以判断它在线的哪一侧,就可以知道它可能属于好的或坏的零件了。例如图里的黄、蓝、粉三条线,都可以完美地把当前的两种情况划分开。甚至x1坐标轴或x2坐标轴都能成为一个划分直线(这两个直线均能把所有点正确地分开)。

读者也看到了,对于图中的两堆点,我们有无数条直线可以将其划分开,事实上我们不光要能划分当前的点,当新来的点进来是,也要能很好地将其划分,所以哪条线最好呢?

怎样一条直线属于最佳的划分直线?实际上感知机无法找到一条最佳的直线,它找到的可能是图中所有画出来的线,只要能把所有的点都分开就好了。

得出结论:
如果一条直线能够不分错一个点,那就是一条好的直线
进一步来说:

如果我们把所有分错的点和直线的距离求和,让这段求和的举例最小(最好是0,这样就表示没有分错的点了),这条直线就是我们要找的。

二、感知机的数学角度

首先我们确定一下终极目标:甭管找最佳划分直线啥中间乱七八糟的步骤,反正最后生成一个函数f(x),当我们把新的一个数据x扔进函数以后,它会预测告诉我这是蓝的还是黄的,多简单啊。所以我们不要去考虑中间过程,先把结果定了。

在这里插入图片描述

瞧,f(x)不是出来了嘛,sign是啥?wx+b是啥?别着急,我们再看一下sigin函数是什么。

在这里插入图片描述

sign好像很简单,当x大于等于0,sign输出1,否则输出-1。那么往前递归一下,wx+b如果大于等于0,f(x)就等于1,反之f(x)等于-1。

那么wx+b是啥?
它就是那条最优的直线。我们把这个公式放在二维情况下看,二维中的直线是这样定义的:y=ax+b。在二维中,w就是a,b还是b。所以wx+b是一条直线(比如说本文最开始那张图中的蓝线)。如果新的点x在蓝线左侧,那么wx+b<0,再经过sign,最后f输出-1,如果在右侧,输出1。等等,好像有点说不通,把情况等价到二维平面中,y=ax+b,只要点在x轴上方,甭管点在线的左侧右侧,最后结果都是大于0啊,这个值得正负跟线有啥关系?emmm….其实wx+b和ax+b表现直线的形式一样,但是又稍有差别。我们把最前头的图逆时针旋转45度,蓝线是不是变成x轴了?哈哈这样是不是原先蓝线的右侧变成了x轴的上方了?其实感知机在计算wx+b这条线的时候,已经在暗地里进行了转换,使得用于划分的直线变成x轴,左右侧分别为x轴的上方和下方,也就成了正和负。

那么,为啥是wx+b,而不叫ax+b?
在本文中使用零件作为例子,上文使用了长度和重量(x1,x2)来表示一个零件的属性,所以一个二维平面就足够,那么如果零件的品质和色泽也有关系呢?那就得加一个x3表示色泽,样本的属性就变成了(x1,x2,x3),变成三维了。wx+b并不是只用于二维情况,在三维这种情况下,仍然可以使用这个公式。所以wx+b与ax+b只是在二维上近似一致,实际上是不同的东西。在三维中wx+b是啥?我们想象屋子里一个角落有蓝点,一个角落有黄点,还用一条直线的话,显然是不够的,需要一个平面!所以在三维中,wx+b是一个平面!至于为什么,后文会详细说明。四维呢?emmm…好像没法描述是个什么东西可以把四维空间分开,但是对于四维来说,应该会存在一个东西像一把刀一样把四维空间切成两半。能切成两半,应该是一个对于四维来说是个平面的东西,就像对于三维来说切割它的是一个二维的平面,二维来说是一个一维的平面。总之四维中wx+b可以表示为一个相对于四维来说是个平面的东西,然后把四维空间一切为二,我们给它取名叫超平面。由此引申,在高维空间中,wx+b是一个划分超平面,这也就是它正式的名字。

正式来说:
wx+b是一个n维空间中的超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分成两部分,位于两部分的点分别被分为正负两类,所以,超平面S称为分离超平面。

细节:

w是超平面的法向量:对于一个平面来说w就是这么定义的,是数学知识,可以谷歌补习一下

b是超平面的截距:可以按照二维中的ax+b理解

特征空间:也就是整个n维空间,样本的每个属性都叫一个特征,特征空间的意思是在这个空间中可以找到样本所有的属性组合

在这里插入图片描述
我们从最初的要求有个f(x),引申到能只输出1和-1的sign(x),再到现在的wx+b,看起来越来越简单了,只要能找到最合适的wx+b,就能完成感知机的搭建了。前文说过,让误分类的点距离和最大化来找这个超平面,首先我们要放出单独计算一个点与超平面之间距离的公式,这样才能将所有的点的距离公式求出来对不?

在这里插入图片描述

先看wx+b,在二维空间中,我们可以认为它是一条直线,同时因为做过转换,整张图旋转后wx+b是x轴,那么所有点到x轴的距离其实就是wx+b的值对不?当然了,考虑到x轴下方的点,得加上绝对值->|wx+b|,求所有误分类点的距离和,也就是求|wx+b|的总和,让它最小化。很简单啊,把w和b等比例缩小就好啦,比如说w改为0.5w,b改为0.5b,线还是那条线,但是值缩小两倍啦!你还不满意?我可以接着缩!缩到0去!所以啊,我们要加点约束,让整个式子除以w的模长。啥意思?就是w不管怎么样,要除以它的单位长度。如果我w和b等比例缩小,那||w||也会等比例缩小,值一动不动,很稳。没有除以模长之前,|wx+b|叫函数间隔,除模长之后叫几何间隔,几何间隔可以认为是物理意义上的实际长度,管你怎么放大缩小,你物理距离就那样,不可能改个数就变。在机器学习中求距离时,通常是使用几何间隔的,否则无法求出解。

在这里插入图片描述
对于误分类的数据,例如实际应该属于蓝色的点(线的右侧,y>0),但实际上预测出来是在左侧(wx+b<0),那就是分错了,结果是负,这时候再加个符号,结果就是正了,再除以w的模长,就是单个误分类的点到超平面的举例。举例总和就是所有误分类的点相加。

上图最后说不考虑除以模长,就变成了函数间隔,为什么可以这么做呢?不考虑wb等比例缩小这件事了吗?上文说的是错的吗?

有一种解释是这样说的:感知机是误分类驱动的算法,它的终极目标是没有误分类的点,如果没有误分类的点,总和距离就变成了0,w和b值怎样都没用。所以几何间隔和函数间隔在感知机的应用上没有差别,为了计算简单,使用函数间隔。

在这里插入图片描述
以上是损失函数的正式定义,在求得划分超平面的终极目标就是让损失函数最小化,如果是0的话就相当完美了。
在这里插入图片描述

感知机使用梯度下降方法求得w和b的最优解,从而得到划分超平面wx+b,关于梯度下降及其中的步长受篇幅所限可以自行谷歌。

三、代码实现

#coding=utf-8
#Author:Dodo
#Date:2018-11-15
#Email:lvtengchao@pku.edu.cn
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类)
运行时长:78.6s
'''
import numpy as np
import time
def loadData(fileName):
    '''
    加载Mnist数据集
    :param fileName:要加载的数据集路径
    :return: list形式的数据集及标记
    '''
    print('start to read data')
    # 存放数据及标记的list
    dataArr = []; labelArr = []
    # 打开文件
    fr = open(fileName, 'r')
    # 将文件按行读取
    for line in fr.readlines():
        # 对每一行数据按切割福','进行切割,返回字段列表
        curLine = line.strip().split(',')
        # Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1
        if int(curLine[0]) >= 5:
            labelArr.append(1)
        else:
            labelArr.append(-1)
        #存放标记
        #[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型
        #[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)
        dataArr.append([int(num)/255 for num in curLine[1:]])
    #返回data和label
    return dataArr, labelArr
def perceptron(dataArr, labelArr, iter=50):
    '''
    感知器训练过程
    :param dataArr:训练集的数据 (list)
    :param labelArr: 训练集的标签(list)
    :param iter: 迭代次数,默认50
    :return: 训练好的w和b
    '''
    print('start to trans')
    #将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)
    #转换后的数据中每一个样本的向量都是横向的
    dataMat = np.mat(dataArr)
    #将标签转换成矩阵,之后转置(.T为转置)。
    #转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取
    #对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一
    labelMat = np.mat(labelArr).T
    #获取数据矩阵的大小,为m*n
    m, n = np.shape(dataMat)
    #创建初始权重w,初始值全为0。
    #np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与
    #样本长度保持一致
    w = np.zeros((1, np.shape(dataMat)[1]))
    #初始化偏置b为0
    b = 0
    #初始化步长,也就是梯度下降过程中的n,控制梯度下降速率
    h = 0.0001
    #进行iter次迭代计算
    for k in range(iter):
        #对于每一个样本进行梯度下降
        #李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一
        #进行一次梯度下降
        #在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用
        #的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。
        #两者的差异各有千秋,但较为常用的是随机梯度下降。
        for i in range(m):
            #获取当前样本的向量
            xi = dataMat[i]
            #获取当前样本所对应的标签
            yi = labelMat[i]
            #判断是否是误分类样本
            #误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节
            #在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的
            if -1 * yi * (w * xi.T + b) >= 0:
                #对于误分类样本,进行梯度下降,更新w和b
                w = w + h *  yi * xi
                b = b + h * yi
        #打印训练进度
        print('Round %d:%d training' % (k, iter))
    #返回训练完的w、b
    return w, b
def test(dataArr, labelArr, w, b):
    '''
    测试准确率
    :param dataArr:测试集
    :param labelArr: 测试集标签
    :param w: 训练获得的权重w
    :param b: 训练获得的偏置b
    :return: 正确率
    '''
    print('start to test')
    #将数据集转换为矩阵形式方便运算
    dataMat = np.mat(dataArr)
    #将label转换为矩阵并转置,详细信息参考上文perceptron中
    #对于这部分的解说
    labelMat = np.mat(labelArr).T
    #获取测试数据集矩阵的大小
    m, n = np.shape(dataMat)
    #错误样本数计数
    errorCnt = 0
    #遍历所有测试样本
    for i in range(m):
        #获得单个样本向量
        xi = dataMat[i]
        #获得该样本标记
        yi = labelMat[i]
        #获得运算结果
        result = -1 * yi * (w * xi.T + b)
        #如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一
        if result >= 0: errorCnt += 1
    #正确率 = 1 - (样本分类错误数 / 样本总数)
    accruRate = 1 - (errorCnt / m)
    #返回正确率
    return accruRate
if __name__ == '__main__':
    #获取当前时间
    #在文末同样获取当前时间,两时间差即为程序运行时间
    start = time.time()
    #获取训练集及标签
    trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
    #获取测试集及标签
    testData, testLabel = loadData('../Mnist/mnist_test.csv')
    #训练获得权重
    w, b = perceptron(trainData, trainLabel, iter = 30)
    #进行测试,获得正确率
    accruRate = test(testData, testLabel, w, b)
    #获取当前时间,作为结束时间
    end = time.time()
    #显示正确率
    print('accuracy rate is:', accruRate)
    #显示用时时长
    print('time span:', end - start)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/822996.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

火车头伪原创插件怎么用【php源码】

这篇文章主要介绍了儿童学python编程哪个学校好&#xff0c;具有一定借鉴价值&#xff0c;需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获&#xff0c;下面让小编带着大家一起了解一下。 1、python几岁学比较好 python建议8岁到10岁以上的孩子学习&#xff0c;详细介…

聊天系统登录后端实现

定义返回的数据格式 # Restful API from flask import jsonifyclass HttpCode(object):# 响应正常ok 200# 没有登陆错误unloginerror 401# 没有权限错误permissionerror 403# 客户端参数错误paramserror 400# 服务器错误servererror 500def _restful_result(code, messa…

线性代数基础一 行列式

前言 行列式在线性代数中具有非常重要的地位,很多线性代数的问题都可以转化为计算行列式来解决。 集合 集合的表示方法&#xff1a;常用的有列举法和描述法。 列举法&#xff1a;常用于表示有限集合&#xff0c;把集合中的所有元素一一列举出来&#xff0c;写在大括号内&am…

grid map学习笔记3之详解grid_map_pcl库实现point cloud点云转换成grid map栅格地图

文章目录 0 引言1 grid_map_pcl示例1.1 主要文件1.2 示例数据1.3 启动文件1.4 配置文件1.5 主要实现流程1.6 启动示例1.7 示例结果 2 D435i 点云生成栅格地图2.1 D435i 点云文件2.2 修改启动文件2.3 测试和结果2.4 修改配置文件2.5 重新测试和结果 0 引言 grid map学习笔记1已…

海外网红营销:如何利用故事打造独具魅力的品牌形象?

随着全球数字化时代的来临&#xff0c;品牌推广已经从传统的广告宣传方式逐渐转变为更加注重故事性和情感共鸣的营销手段。故事营销在品牌塑造和传播过程中发挥着重要作用&#xff0c;它能够吸引消费者的注意力&#xff0c;加深品牌与受众的情感连接&#xff0c;从而为品牌带来…

uniapp开发微信小程序--自定义顶部导航栏

一、实现效果&#xff1a; 二、代码实现&#xff1a; 1.在pages.json文件中&#xff0c;单页面定义导航栏&#xff0c;添加以下代码&#xff1a; "navigationStyle": "custom" //自定义导航栏如图所示&#xff1a; 2.在components文件夹下&#xff0c;…

用于毫米波天线的新型无卤素超低传输损耗多层电路板R-5410

3月3日消息&#xff0c;松下公司宣布&#xff0c;其工业解决方案公司已经实现了R-5410的商业化&#xff0c;这是一种无卤素、超低传输损耗的多层电路板&#xff08;MLCB&#xff09;材料&#xff0c;适用于毫米波天线。将于2021年3月开始量产。 毫米波雷达是汽车、通信等行业的…

uC-OS2 V2.93 STM32L476 移植:环境搭建篇

前言 uC-OS2 是比较经典的 RTOS&#xff0c;如今软件授权已经改为 Apache License Version 2.0&#xff0c;意味着可以免费商用了 当前 uC-OS2 的最新版本是&#xff1a; V2.93&#xff0c;打算研究一下 RTOS 的设计思想&#xff0c;所以想在已有的开发板&#xff1a;NUCLEO-L…

Mybatis,Spring,SpringMVC项目创建

先做一些设置 file——setting——maven 创建项目maven项目 主方法下和java平行 创建完成 接下里就是导依赖了 spring和mybatis创建文件是一样的&#xff0c;就是配置不一样 SpringMVC前面和Mybatis和Spring是一样的&#xff0c;后面需要web 然后是new——projectStructure …

【数字IC基础】从触发器到亚稳态

从触发器到亚稳态 单稳态和双稳态三态门单稳态电路双稳态电路 锁存器SR锁存器 触发器电平触发的触发器SR触发器D锁存器&#xff08;电平触发的D触发器&#xff09; 边沿触发的触发器边沿触发 D 触发器脉冲触发的触发器 建立时间和保持时间恢复时间和去除时间亚稳态亚稳态的产生…

C++ | 哈希表的实现与unordered_set/unordered_map的封装

目录 前言 一、哈希 1、哈希的概念 2、哈希函数 &#xff08;1&#xff09;直接定址法 &#xff08;2&#xff09;除留余数法 &#xff08;3&#xff09;平方取中法&#xff08;了解&#xff09; &#xff08;4&#xff09;随机数法&#xff08;了解&#xff09; 3、哈…

.net 6升级.net7 容器报错is not supported on this platform.

一、生成验证码报错 System.PlatformNotSupportedException: System.Drawing.Common is not supported on this platform.Tue, Aug 1 2023 9:57:37 pmat System.Drawing.Image..ctor()Tue, Aug 1 2023 9:57:37 pmat System.Drawing.Bitmap..ctor(Int32 width, Int32 height) 二…

keil使用printf函数重定串口输出,程序卡在Reset_Handler

最近在做国产芯片GD32F103项目&#xff0c;使用printf()函数重定向USART0串口输出&#xff0c;发现程序没有运行&#xff0c;单步调试发现&#xff0c;程序卡在startup_gd32f10x.s文件的Reset_Handler处&#xff0c;记录一下解决方法。 解决办法&#xff1a; 1、引用头文件#in…

Git rebase和merge区别详解

文章目录 变基的基础用法变基过程中的冲突解决冲突后无法push问题更新变基后的代码更有趣的变基用法变基的风险用变基解决变基变基 vs 合并 此文在阅读前需要有一定的git命令基础&#xff0c;若基础尚未掌握&#xff0c;建议先阅读这篇文章Git命令播报详版 在 Git 中整合来自不…

【ChatGPT辅助学Rust | 基础系列 | 函数,语句和表达式】函数的定义,使用和特性

文章标题 简介一&#xff0c;函数1&#xff0c;函数的定义2&#xff0c;函数的调用3&#xff0c;函数的参数4&#xff0c;函数的返回值 二&#xff0c;语句和表达式1&#xff0c;语句2&#xff0c;表达式 总结&#xff1a; 简介 在Rust编程中&#xff0c;函数&#xff0c;语句…

hadoop与HDFS交互

一、利用Shell命令与HDFS进行交互 在进行HDFS编程实践前&#xff0c;需要首先启动Hadoop。可以执行如下命令启动Hadoop&#xff1a; cd /usr/local/hadoop ./sbin/start-dfs.sh #启动hadoop Hadoop支持很多Shell命令&#xff0c;其中fs是HDFS最常用的命令&#xff0c;利用fs…

在矩池云使用Llama2-7B的具体方法

今天给大家分享如何在矩池云服务器使用 Llama2-7b模型。 硬件要求 矩池云已经配置好了 Llama 2 Web UI 环境&#xff0c;显存需要大于 8G&#xff0c;可以选择 A4000、P100、3090 以及更高配置的等显卡。 租用机器 在矩池云主机市场&#xff1a;https://matpool.com/host-m…

5.开发DAO组件 -- Spring Data JPA

开发DAO组件 作用&#xff1a;用来访问数据库 持久化技术&#xff1a;Spring Data, JPA, Mybaits&#xff0c;jOOQ 等 Spring Boot为常见持久化技术提供了支持。 现在使用 Spring Data JPA Spring Data JPA 使用Spring Data JPA来访问数据库&#xff0c;需要再项目添加两个…

探究Vue源码:mustache模板引擎(8) 了解nestTokens 手写梳理模板字符串井号循环嵌套结构tokens

上文 探究Vue源码:mustache模板引擎(7) 手写模板字符串转换tokens数组过程中 我们操作出了一个较为简单的 tokens数组 并简单处理了 井号反斜杠的特殊符号语法 那么 我们现在需要将零散的tokens嵌套起来 主要就体现在 我们 井号 到 反斜杠 中间的内容 显然是属于循环语句中的子…

Postman如何做接口测试1:如何导入 swagger 接口文档

在使用 postman 做接口测试过程中&#xff0c;测试工程师会往界面中填入非常多的参数&#xff0c;包括 url 地址&#xff0c;请求方法&#xff0c;消息头和消息体等一系列数据&#xff0c;在请求参数比较多的情况下非常花时间。 我们可以使用 postman 的文档导入功能&#xff…