【机器学习】Overfitting and Regularization

news2025/1/16 0:50:27

Overfitting and Regularization

    • 1. 过拟合
    • 添加正则化
    • 2. 具有正则化的损失函数
      • 2.1 正则化线性回归的损失函数
      • 2.2 正则化逻辑回归的损失函数
    • 3. 具有正则化的梯度下降
      • 3.1 使用正则化计算梯度(线性回归 / 逻辑回归)
      • 3.2 正则化线性回归的梯度函数
      • 3.3 正则化逻辑回归的梯度函数
    • 4. 重新运行过拟合示例
    • 附录

导入所需的库

import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from ipywidgets import Output
from plt_overfit import overfit_example, output
from lab_utils_common import sigmoid
plt.style.use('./deeplearning.mplstyle')
np.set_printoptions(precision=8)

1. 过拟合

plt.close("all")
display(output)
ofit = overfit_example(False)

在这里插入图片描述

在这里插入图片描述

从图中可以看出,拟合度= 1的数据;为“欠拟合”。拟合度= 6的数据;为“过拟合”

添加正则化

在这里插入图片描述
在这里插入图片描述

线性回归和逻辑回归之间的损失函数存在差异,但在方程中添加正则化是相同的。
线性回归和逻辑回归的梯度函数非常相似。它们的区别仅在于 f w b f_{wb} fwb 的实现。

2. 具有正则化的损失函数

2.1 正则化线性回归的损失函数

正则化线性回归的损失函数等式表示为:
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 + λ 2 m ∑ j = 0 n − 1 w j 2 (1) J(\mathbf{w},b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 \tag{1} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2+2mλj=0n1wj2(1)

其中,
f w , b ( x ( i ) ) = w ⋅ x ( i ) + b (2) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x}^{(i)} + b \tag{2} fw,b(x(i))=wx(i)+b(2)

与没有正则化的线性回归相比,区别在于正则化项,即: λ 2 m ∑ j = 0 n − 1 w j 2 \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 2mλj=0n1wj2

带有正则化可以激励梯度下降最小化参数的大小。需要注意的是,在这个例子中,参数 b b b没有被正则化,这是标准做法。

等式(1)和(2)的实现如下:

def compute_cost_linear_reg(X, y, w, b, lambda_ = 1):
    """
    Computes the cost over all examples
    Args:
      X (ndarray (m,n): Data, m examples with n features
      y (ndarray (m,)): target values
      w (ndarray (n,)): model parameters  
      b (scalar)      : model parameter
      lambda_ (scalar): Controls amount of regularization
    Returns:
      total_cost (scalar):  cost 
    """

    m  = X.shape[0]
    n  = len(w)
    cost = 0.
    for i in range(m):
        f_wb_i = np.dot(X[i], w) + b                                   #(n,)(n,)=scalar, see np.dot
        cost = cost + (f_wb_i - y[i])**2                               #scalar             
    cost = cost / (2 * m)                                              #scalar  
 
    reg_cost = 0
    for j in range(n):
        reg_cost += (w[j]**2)                                          #scalar
    reg_cost = (lambda_/(2*m)) * reg_cost                              #scalar
    
    total_cost = cost + reg_cost                                       #scalar
    return total_cost                                                  #scalar
np.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)

print("Regularized cost:", cost_tmp)

在这里插入图片描述

2.2 正则化逻辑回归的损失函数

对于正则化的逻辑回归,损失函数表示为:
J ( w , b ) = 1 m ∑ i = 0 m − 1 [ − y ( i ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) ] + λ 2 m ∑ j = 0 n − 1 w j 2 (3) J(\mathbf{w},b) = \frac{1}{m} \sum_{i=0}^{m-1} \left[ -y^{(i)} \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - y^{(i)}\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 \tag{3} J(w,b)=m1i=0m1[y(i)log(fw,b(x(i)))(1y(i))log(1fw,b(x(i)))]+2mλj=0n1wj2(3)

其中,
f w , b ( x ( i ) ) = s i g m o i d ( w ⋅ x ( i ) + b ) (4) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = sigmoid(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \tag{4} fw,b(x(i))=sigmoid(wx(i)+b)(4)

同样,与没有正则化的逻辑回归相比,区别在于正则化项,即: λ 2 m ∑ j = 0 n − 1 w j 2 \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 2mλj=0n1wj2

代码实现为:

def compute_cost_logistic_reg(X, y, w, b, lambda_ = 1):
    """
    Computes the cost over all examples
    Args:
    Args:
      X (ndarray (m,n): Data, m examples with n features
      y (ndarray (m,)): target values
      w (ndarray (n,)): model parameters  
      b (scalar)      : model parameter
      lambda_ (scalar): Controls amount of regularization
    Returns:
      total_cost (scalar):  cost 
    """

    m,n  = X.shape
    cost = 0.
    for i in range(m):
        z_i = np.dot(X[i], w) + b                                      #(n,)(n,)=scalar, see np.dot
        f_wb_i = sigmoid(z_i)                                          #scalar
        cost +=  -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i)      #scalar
             
    cost = cost/m                                                      #scalar

    reg_cost = 0
    for j in range(n):
        reg_cost += (w[j]**2)                                          #scalar
    reg_cost = (lambda_/(2*m)) * reg_cost                              #scalar
    
    total_cost = cost + reg_cost                                       #scalar
    return total_cost                                                  #scalar
np.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)

print("Regularized cost:", cost_tmp)

在这里插入图片描述

3. 具有正则化的梯度下降

运行梯度下降的基本算法不会随着正则化发生改变,正则化改变的是计算梯度。

3.1 使用正则化计算梯度(线性回归 / 逻辑回归)

线性回归和逻辑回归的梯度计算几乎相同,只是在 f w b f_{\mathbf{w}b} fwb的计算上有所不同。
∂ J ( w , b ) ∂ w j = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m w j ∂ J ( w , b ) ∂ b = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) \begin{align*} \frac{\partial J(\mathbf{w},b)}{\partial w_j} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_{j}^{(i)} + \frac{\lambda}{m} w_j \tag{2} \\ \frac{\partial J(\mathbf{w},b)}{\partial b} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \tag{3} \end{align*} wjJ(w,b)bJ(w,b)=m1i=0m1(fw,b(x(i))y(i))xj(i)+mλwj=m1i=0m1(fw,b(x(i))y(i))(2)(3)

  • 对于线性回归模型,
    f w , b ( x ) = w ⋅ x + b f_{\mathbf{w},b}(x) = \mathbf{w} \cdot \mathbf{x} + b fw,b(x)=wx+b
  • 对于逻辑回归模型,
    z = w ⋅ x + b z = \mathbf{w} \cdot \mathbf{x} + b z=wx+b
    f w , b ( x ) = g ( z ) f_{\mathbf{w},b}(x) = g(z) fw,b(x)=g(z)
    其中, g ( z ) g(z) g(z) 是sigmoid 函数:
    g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

添加正则化的项是 λ m w j \frac{\lambda}{m} w_j mλwj

3.2 正则化线性回归的梯度函数

def compute_gradient_linear_reg(X, y, w, b, lambda_): 
    """
    Computes the gradient for linear regression 
    Args:
      X (ndarray (m,n): Data, m examples with n features
      y (ndarray (m,)): target values
      w (ndarray (n,)): model parameters  
      b (scalar)      : model parameter
      lambda_ (scalar): Controls amount of regularization
      
    Returns:
      dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. 
      dj_db (scalar):       The gradient of the cost w.r.t. the parameter b. 
    """
    m,n = X.shape           #(number of examples, number of features)
    dj_dw = np.zeros((n,))
    dj_db = 0.

    for i in range(m):                             
        err = (np.dot(X[i], w) + b) - y[i]                 
        for j in range(n):                         
            dj_dw[j] = dj_dw[j] + err * X[i, j]               
        dj_db = dj_db + err                        
    dj_dw = dj_dw / m                                
    dj_db = dj_db / m   
    
    for j in range(n):
        dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]

    return dj_db, dj_dw
np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)

print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )

在这里插入图片描述

3.3 正则化逻辑回归的梯度函数

def compute_gradient_logistic_reg(X, y, w, b, lambda_): 
    """
    Computes the gradient for linear regression 
 
    Args:
      X (ndarray (m,n): Data, m examples with n features
      y (ndarray (m,)): target values
      w (ndarray (n,)): model parameters  
      b (scalar)      : model parameter
      lambda_ (scalar): Controls amount of regularization
    Returns
      dj_dw (ndarray Shape (n,)): The gradient of the cost w.r.t. the parameters w. 
      dj_db (scalar)            : The gradient of the cost w.r.t. the parameter b. 
    """
    m,n = X.shape
    dj_dw = np.zeros((n,))                            #(n,)
    dj_db = 0.0                                       #scalar

    for i in range(m):
        f_wb_i = sigmoid(np.dot(X[i],w) + b)          #(n,)(n,)=scalar
        err_i  = f_wb_i  - y[i]                       #scalar
        for j in range(n):
            dj_dw[j] = dj_dw[j] + err_i * X[i,j]      #scalar
        dj_db = dj_db + err_i
    dj_dw = dj_dw/m                                   #(n,)
    dj_db = dj_db/m                                   #scalar

    for j in range(n):
        dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]

    return dj_db, dj_dw  
np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)

print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )

在这里插入图片描述

4. 重新运行过拟合示例

plt.close("all")
display(output)
ofit = overfit_example(True)

以分类任务(逻辑回归)为例,将拟合度设置为6, λ \lambda λ为0(没有正则化),开始拟合数据,出现了过拟合现象。
在这里插入图片描述
现在,将 λ \lambda λ为1(增加正则化),开始拟合数据。
在这里插入图片描述
很明显,增加正则化能够减小过拟合。

附录

plot_overfit.py 源码:

"""
plot_overfit
    class and assocaited routines that plot an interactive example of overfitting and its solutions
"""
import math
from ipywidgets import Output
from matplotlib.gridspec import GridSpec
from matplotlib.widgets import Button, CheckButtons
from sklearn.linear_model import LogisticRegression, Ridge
from lab_utils_common import np, plt, dlc, predict_logistic, plot_data, zscore_normalize_features

def map_one_feature(X1, degree):
    """
    Feature mapping function to polynomial features
    """
    X1 = np.atleast_1d(X1)
    out = []
    string = ""
    k = 0
    for i in range(1, degree+1):
        out.append((X1**i))
        string = string + f"w_{{{k}}}{munge('x_0',i)} + "
        k += 1
    string = string + ' b' #add b to text equation, not to data
    return np.stack(out, axis=1), string


def map_feature(X1, X2, degree):
    """
    Feature mapping function to polynomial features
    """
    X1 = np.atleast_1d(X1)
    X2 = np.atleast_1d(X2)

    out = []
    string = ""
    k = 0
    for i in range(1, degree+1):
        for j in range(i + 1):
            out.append((X1**(i-j) * (X2**j)))
            string = string + f"w_{{{k}}}{munge('x_0',i-j)}{munge('x_1',j)} + "
            k += 1
    #print(string + 'b')
    return np.stack(out, axis=1), string + ' b'

def munge(base, exp):
    if exp == 0:
        return ''
    if exp == 1:
        return base
    return base + f'^{{{exp}}}'

def plot_decision_boundary(ax, x0r,x1r, predict,  w, b, scaler = False, mu=None, sigma=None, degree=None):
    """
    Plots a decision boundary
     Args:
      x0r : (array_like Shape (1,1)) range (min, max) of x0
      x1r : (array_like Shape (1,1)) range (min, max) of x1
      predict : function to predict z values
      scalar : (boolean) scale data or not
    """

    h = .01  # step size in the mesh
    # create a mesh to plot in
    xx, yy = np.meshgrid(np.arange(x0r[0], x0r[1], h),
                         np.arange(x1r[0], x1r[1], h))

    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    points = np.c_[xx.ravel(), yy.ravel()]
    Xm,_ = map_feature(points[:, 0], points[:, 1],degree)
    if scaler:
        Xm = (Xm - mu)/sigma
    Z = predict(Xm, w, b)

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    contour = ax.contour(xx, yy, Z, levels = [0.5], colors='g')
    return contour

# use this to test the above routine
def plot_decision_boundary_sklearn(x0r, x1r, predict, degree,  scaler = False):
    """
    Plots a decision boundary
     Args:
      x0r : (array_like Shape (1,1)) range (min, max) of x0
      x1r : (array_like Shape (1,1)) range (min, max) of x1
      degree: (int)                  degree of polynomial
      predict : function to predict z values
      scaler  : not sure
    """

    h = .01  # step size in the mesh
    # create a mesh to plot in
    xx, yy = np.meshgrid(np.arange(x0r[0], x0r[1], h),
                         np.arange(x1r[0], x1r[1], h))

    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    points = np.c_[xx.ravel(), yy.ravel()]
    Xm = map_feature(points[:, 0], points[:, 1],degree)
    if scaler:
        Xm = scaler.transform(Xm)
    Z = predict(Xm)

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.contour(xx, yy, Z, colors='g')
    #plot_data(X_train,y_train)

#for debug, uncomment the #@output statments below for routines you want to get error output from
# In the notebook that will call these routines, import  `output`
# from plt_overfit import overfit_example, output
# then, in a cell where the error messages will be the output of..
#display(output)

output = Output() # sends hidden error messages to display when using widgets

class button_manager:
    ''' Handles some missing features of matplotlib check buttons
    on init:
        creates button, links to button_click routine,
        calls call_on_click with active index and firsttime=True
    on click:
        maintains single button on state, calls call_on_click
    '''

    @output.capture()  # debug
    def __init__(self,fig, dim, labels, init, call_on_click):
        '''
        dim: (list)     [leftbottom_x,bottom_y,width,height]
        labels: (list)  for example ['1','2','3','4','5','6']
        init: (list)    for example [True, False, False, False, False, False]
        '''
        self.fig = fig
        self.ax = plt.axes(dim)  #lx,by,w,h
        self.init_state = init
        self.call_on_click = call_on_click
        self.button  = CheckButtons(self.ax,labels,init)
        self.button.on_clicked(self.button_click)
        self.status = self.button.get_status()
        self.call_on_click(self.status.index(True),firsttime=True)

    @output.capture()  # debug
    def reinit(self):
        self.status = self.init_state
        self.button.set_active(self.status.index(True))      #turn off old, will trigger update and set to status

    @output.capture()  # debug
    def button_click(self, event):
        ''' maintains one-on state. If on-button is clicked, will process correctly '''
        #new_status = self.button.get_status()
        #new = [self.status[i] ^ new_status[i] for i in range(len(self.status))]
        #newidx = new.index(True)
        self.button.eventson = False
        self.button.set_active(self.status.index(True))  #turn off old or reenable if same
        self.button.eventson = True
        self.status = self.button.get_status()
        self.call_on_click(self.status.index(True))

class overfit_example():
    """ plot overfit example """
    # pylint: disable=too-many-instance-attributes
    # pylint: disable=too-many-locals
    # pylint: disable=missing-function-docstring
    # pylint: disable=attribute-defined-outside-init
    def __init__(self, regularize=False):
        self.regularize=regularize
        self.lambda_=0
        fig = plt.figure( figsize=(8,6))
        fig.canvas.toolbar_visible = False
        fig.canvas.header_visible = False
        fig.canvas.footer_visible = False
        fig.set_facecolor('#ffffff') #white
        gs  = GridSpec(5, 3, figure=fig)
        ax0 = fig.add_subplot(gs[0:3, :])
        ax1 = fig.add_subplot(gs[-2, :])
        ax2 = fig.add_subplot(gs[-1, :])
        ax1.set_axis_off()
        ax2.set_axis_off()
        self.ax = [ax0,ax1,ax2]
        self.fig = fig

        self.axfitdata = plt.axes([0.26,0.124,0.12,0.1 ])  #lx,by,w,h
        self.bfitdata  = Button(self.axfitdata , 'fit data', color=dlc['dlblue'])
        self.bfitdata.label.set_fontsize(12)
        self.bfitdata.on_clicked(self.fitdata_clicked)

        #clear data is a future enhancement
        #self.axclrdata = plt.axes([0.26,0.06,0.12,0.05 ])  #lx,by,w,h
        #self.bclrdata  = Button(self.axclrdata , 'clear data', color='white')
        #self.bclrdata.label.set_fontsize(12)
        #self.bclrdata.on_clicked(self.clrdata_clicked)

        self.cid = fig.canvas.mpl_connect('button_press_event', self.add_data)

        self.typebut = button_manager(fig, [0.4, 0.07,0.15,0.15], ["Regression", "Categorical"],
                                       [False,True], self.toggle_type)

        self.fig.text(0.1, 0.02+0.21, "Degree", fontsize=12)
        self.degrbut = button_manager(fig,[0.1,0.02,0.15,0.2 ], ['1','2','3','4','5','6'],
                                        [True, False, False, False, False, False], self.update_equation)
        if self.regularize:
            self.fig.text(0.6, 0.02+0.21, r"lambda($\lambda$)", fontsize=12)
            self.lambut = button_manager(fig,[0.6,0.02,0.15,0.2 ], ['0.0','0.2','0.4','0.6','0.8','1'],
                                        [True, False, False, False, False, False], self.updt_lambda)

        #self.regbut =  button_manager(fig, [0.8, 0.08,0.24,0.15], ["Regularize"],
        #                               [False], self.toggle_reg)
        #self.logistic_data()

    def updt_lambda(self, idx, firsttime=False):
      # pylint: disable=unused-argument
        self.lambda_ = idx * 0.2

    def toggle_type(self, idx, firsttime=False):
        self.logistic = idx==1
        self.ax[0].clear()
        if self.logistic:
            self.logistic_data()
        else:
            self.linear_data()
        if not firsttime:
            self.degrbut.reinit()

    @output.capture()  # debug
    def logistic_data(self,redraw=False):
        if not redraw:
            m = 50
            n = 2
            np.random.seed(2)
            X_train = 2*(np.random.rand(m,n)-[0.5,0.5])
            y_train = X_train[:,1]+0.5  > X_train[:,0]**2 + 0.5*np.random.rand(m) #quadratic + random
            y_train = y_train + 0  #convert from boolean to integer
            self.X = X_train
            self.y = y_train
            self.x_ideal = np.sort(X_train[:,0])
            self.y_ideal =  self.x_ideal**2


        self.ax[0].plot(self.x_ideal, self.y_ideal, "--", color = "orangered", label="ideal", lw=1)
        plot_data(self.X, self.y, self.ax[0], s=10, loc='lower right')
        self.ax[0].set_title("OverFitting Example: Categorical data set with noise")
        self.ax[0].text(0.5,0.93, "Click on plot to add data. Hold [Shift] for blue(y=0) data.",
                        fontsize=12, ha='center',transform=self.ax[0].transAxes, color=dlc["dlblue"])
        self.ax[0].set_xlabel(r"$x_0$")
        self.ax[0].set_ylabel(r"$x_1$")

    def linear_data(self,redraw=False):
        if not redraw:
            m = 30
            c = 0
            x_train = np.arange(0,m,1)
            np.random.seed(1)
            y_ideal = x_train**2 + c
            y_train = y_ideal + 0.7 * y_ideal*(np.random.sample((m,))-0.5)
            self.x_ideal = x_train #for redraw when new data included in X
            self.X = x_train
            self.y = y_train
            self.y_ideal = y_ideal
        else:
            self.ax[0].set_xlim(self.xlim)
            self.ax[0].set_ylim(self.ylim)

        self.ax[0].scatter(self.X,self.y, label="y")
        self.ax[0].plot(self.x_ideal, self.y_ideal, "--", color = "orangered", label="y_ideal", lw=1)
        self.ax[0].set_title("OverFitting Example: Regression Data Set (quadratic with noise)",fontsize = 14)
        self.ax[0].set_xlabel("x")
        self.ax[0].set_ylabel("y")
        self.ax0ledgend = self.ax[0].legend(loc='lower right')
        self.ax[0].text(0.5,0.93, "Click on plot to add data",
                        fontsize=12, ha='center',transform=self.ax[0].transAxes, color=dlc["dlblue"])
        if not redraw:
            self.xlim = self.ax[0].get_xlim()
            self.ylim = self.ax[0].get_ylim()


    @output.capture()  # debug
    def add_data(self, event):
        if self.logistic:
            self.add_data_logistic(event)
        else:
            self.add_data_linear(event)

    @output.capture()  # debug
    def add_data_logistic(self, event):
        if event.inaxes == self.ax[0]:
            x0_coord = event.xdata
            x1_coord = event.ydata

            if event.key is None:  #shift not pressed
                self.ax[0].scatter(x0_coord, x1_coord, marker='x', s=10, c = 'red', label="y=1")
                self.y = np.append(self.y,1)
            else:
                self.ax[0].scatter(x0_coord, x1_coord, marker='o', s=10, label="y=0", facecolors='none',
                                   edgecolors=dlc['dlblue'],lw=3)
                self.y = np.append(self.y,0)
            self.X = np.append(self.X,np.array([[x0_coord, x1_coord]]),axis=0)
        self.fig.canvas.draw()

    def add_data_linear(self, event):
        if event.inaxes == self.ax[0]:
            x_coord = event.xdata
            y_coord = event.ydata

            self.ax[0].scatter(x_coord, y_coord, marker='o', s=10, facecolors='none',
                                   edgecolors=dlc['dlblue'],lw=3)
            self.y = np.append(self.y,y_coord)
            self.X = np.append(self.X,x_coord)
            self.fig.canvas.draw()

    #@output.capture()  # debug
    #def clrdata_clicked(self,event):
    #    if self.logistic == True:
    #        self.X = np.
    #    else:
    #        self.linear_regression()


    @output.capture()  # debug
    def fitdata_clicked(self,event):
        if self.logistic:
            self.logistic_regression()
        else:
            self.linear_regression()

    def linear_regression(self):
        self.ax[0].clear()
        self.fig.canvas.draw()

        # create and fit the model using our mapped_X feature set.
        self.X_mapped, _ =  map_one_feature(self.X, self.degree)
        self.X_mapped_scaled, self.X_mu, self.X_sigma  = zscore_normalize_features(self.X_mapped)

        #linear_model = LinearRegression()
        linear_model = Ridge(alpha=self.lambda_, normalize=True, max_iter=10000)
        linear_model.fit(self.X_mapped_scaled, self.y )
        self.w = linear_model.coef_.reshape(-1,)
        self.b = linear_model.intercept_
        x = np.linspace(*self.xlim,30)  #plot line idependent of data which gets disordered
        xm, _ =  map_one_feature(x, self.degree)
        xms = (xm - self.X_mu)/ self.X_sigma
        y_pred = linear_model.predict(xms)

        #self.fig.canvas.draw()
        self.linear_data(redraw=True)
        self.ax0yfit = self.ax[0].plot(x, y_pred, color = "blue", label="y_fit")
        self.ax0ledgend = self.ax[0].legend(loc='lower right')
        self.fig.canvas.draw()

    def logistic_regression(self):
        self.ax[0].clear()
        self.fig.canvas.draw()

        # create and fit the model using our mapped_X feature set.
        self.X_mapped, _ =  map_feature(self.X[:, 0], self.X[:, 1], self.degree)
        self.X_mapped_scaled, self.X_mu, self.X_sigma  = zscore_normalize_features(self.X_mapped)
        if not self.regularize or self.lambda_ == 0:
            lr = LogisticRegression(penalty='none', max_iter=10000)
        else:
            C = 1/self.lambda_
            lr = LogisticRegression(C=C, max_iter=10000)

        lr.fit(self.X_mapped_scaled,self.y)
        #print(lr.score(self.X_mapped_scaled, self.y))
        self.w = lr.coef_.reshape(-1,)
        self.b = lr.intercept_
        #print(self.w, self.b)
        self.logistic_data(redraw=True)
        self.contour = plot_decision_boundary(self.ax[0],[-1,1],[-1,1], predict_logistic, self.w, self.b,
                       scaler=True, mu=self.X_mu, sigma=self.X_sigma, degree=self.degree )
        self.fig.canvas.draw()

    @output.capture()  # debug
    def update_equation(self, idx, firsttime=False):
        #print(f"Update equation, index = {idx}, firsttime={firsttime}")
        self.degree = idx+1
        if firsttime:
            self.eqtext = []
        else:
            for artist in self.eqtext:
                #print(artist)
                artist.remove()
            self.eqtext = []
        if self.logistic:
            _, equation =  map_feature(self.X[:, 0], self.X[:, 1], self.degree)
            string = 'f_{wb} = sigmoid('
        else:
            _, equation =  map_one_feature(self.X, self.degree)
            string = 'f_{wb} = ('
        bz = 10
        seq = equation.split('+')
        blks = math.ceil(len(seq)/bz)
        for i in range(blks):
            if i == 0:
                string = string +  '+'.join(seq[bz*i:bz*i+bz])
            else:
                string = '+'.join(seq[bz*i:bz*i+bz])
            string = string + ')' if i == blks-1 else string + '+'
            ei = self.ax[1].text(0.01,(0.75-i*0.25), f"${string}$",fontsize=9,
                                 transform = self.ax[1].transAxes, ma='left', va='top' )
            self.eqtext.append(ei)
        self.fig.canvas.draw()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/818247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCloud集成OpenTelemetry的实现

SpringCloud项目做链路追踪,比较常见的会集成SleuthZipKin来完成,但这次的需求要集成开源框架OpenTelemetry,这里整理下实现过程。相关文章: 【SpringCloud集成SleuthZipkin进行链路追踪】 【OpenTelemetry框架Trace部分整理】 …

JavaSE运算符

大体上,与C语言差不多,不同的地方,我用红色字体标注了 算术运算符 1. 基本四则运算符:加减乘除模 ( - * / %) int a 10 ; int b 20 ; System . out . println ( a b ); // 30 System . out . println ( a - b…

校园跑腿小程序开发需要哪些核心功能?

提起校园跑腿小程序大家都不陌生,尤其是对上大学的伙伴们来说,更是熟悉得不能再熟悉了,和我们的生活息息相关,密不可分。 对于现在的年轻人来说,网购是非常简单和方便的一种购物方式,随之快递也会越来越多。在我们国家…

白盒测试和黑盒测试的区别是什么?

前言 曾言道“黑猫,白猫,只要能抓住老鼠就是好猫”。我们的测试亦是如此,不管是黑盒测试还是白盒测试,只要能测试出来bug,可以找出问题所在,保障软件质量就是好的测试方法。 对于刚入门的软件测试小白来说…

【Git系列】Git到远程仓库

🐳Git到远程仓库 🧊1. github账号注册🧊2. 初始化本地仓库🧊3. 创建GitHub远程仓库🧊4. 给本地仓库起别名🪟4.1 查看远程库的连接地址🪟4.2 起别名 🧊5. git推送操作🧊6.…

【SEO基础】百度权重是什么意思及网站关键词应该怎么选?

百度权重是什么意思及网站关键词应该怎么选? 正文共:3253字 20图 预计阅读时间:9分钟 ​ 1.什么是网站权重? 这段时间和一些朋友聊到网站权重以及关键词,发现蛮多人对于这两个概念的认知还是存在一些错误的&#xf…

【Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )

文章目录 一、RDD#flatMap 方法1、RDD#flatMap 方法引入2、解除嵌套3、RDD#flatMap 语法说明 二、代码示例 - RDD#flatMap 方法 一、RDD#flatMap 方法 1、RDD#flatMap 方法引入 RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map…

RL— 深度强化学习简介

一、说明 深度强化学习是关于从我们看到和听到的东西中采取最好的行动。不幸的是,强化学习强化学习在学习概念和术语方面存在很高的障碍。在本文中,我们将介绍深度强化学习,并概述一般情况。然而,我们不会回避方程式和术语。它们提…

Linux虚拟机中安装MySQL5.6.34

目录 第一章、xshell工具和xftp的使用1.1)xshell下载与安装1.2)xshell连接1.3)xftp下载安装和连接 第二章、安装MySQL5.6.34(不同版本安装方式不同)2.1)关闭防火墙,传输MySQL压缩包到Linux虚拟机2.2&#x…

canvas实现图片平移,缩放的例子

最近有个水印预览的功能&#xff0c;需要用到canvas 绘制&#xff0c;canvas用的不是很熟&#xff0c;配合chatAI 完成功能。 效果如下 代码如下 原先配置是响应式的&#xff0c;提出来了就不显示操作了&#xff0c;模拟值都写死的 界面给大家参考阅读。 <!DOCTYPE html…

springboot基础--springboot配置说明

一、springboot中的配置文件 1、springboot为什么还需要用配置文件 方便我们修改springboot默认的配置;我们有其他的信息需要保存在配置文件中; 2、springboot中的配置文件有哪些 properties配置文件;yml配置文件; 3、springboot中的配置文件使用中注意事项 文件放入在sr…

黑客技术(网络安全)学习笔记

一、网络安全基础知识 1.计算机基础知识 了解了计算机的硬件、软件、操作系统和网络结构等基础知识&#xff0c;可以帮助您更好地理解网络安全的概念和技术。 2.网络基础知识 了解了网络的结构、协议、服务和安全问题&#xff0c;可以帮助您更好地解决网络安全的原理和技术…

Java版本spring cloud + spring boot企业电子招投标系统源代码+ 支持二次开+定制化服务

&#xfeff; 电子招标采购软件 解决方案 招标面向的对象为供应商库中所有符合招标要求的供应商&#xff0c;当库中的供应商有一定积累的时候&#xff0c;会节省大量引入新供应商的时间。系统自动从供应商库中筛选符合招标要求的供应商&#xff0c;改变以往邀标的业务模式。招…

在当下Android 市场下行时,能拿到offer实属不易~

作者&#xff1a;六哥 如今 Android 已不是前几年那么风光&#xff0c;但它的市场还在&#xff0c;“它”还是那个Android&#xff0c;还是那个我赖以生存、夜以继日陪伴着我的朋友。所以&#xff0c;我永远不会抛弃它。 好了&#xff0c;情感已经抒发的差不多了&#xff0c;我…

SecureCRT配置id_rsa和id_rsa格式问题

选项->会话选项 在弹出的窗口中继续&#xff1a; 连接->SSH2->公钥->属性 在属性会话框中证书文件里输入id_rsa路径&#xff1a; 一般情况下确定就可以了&#xff0c;但可能提示&#xff1a; Could not load the public key from the private key file使用ssh…

学习笔记23 stack和queue

一、stack概念 stack是一种按先进后出方法存放和取出数据的数据结构 java提供了一个stack类&#xff0c;其中有以下几种方法&#xff1a; 看个例子&#xff1a; import java.util.*;/*** This program demonstrates the java.util.Stack class.*/public class StackDemo1 {p…

Android 创建 Gradle Task 自动打包并上传至蒲公英

前言 Android 项目日常开发过程中&#xff0c;经常需要打包给到非开发人员验收或调试&#xff0c;例如测试阶段&#xff0c;就要经常基于测试服务器地址&#xff0c;打包安装包&#xff0c;给到组内测试人员进行测试&#xff0c;并且 BUG 修复完成之后也需要再次打包给到测试人…

极验4代滑块验证码破解(补环境直接强暴式拿下)

目录 前言一、分析二、验证总结借鉴 前言 极验第四代好像简单了特别多&#xff0c;没有什么技巧&#xff0c;环境党直接5分钟拿下。 网址: aHR0cHM6Ly93d3cuZ2VldGVzdC5jb20vYWRhcHRpdmUtY2FwdGNoYS1kZW1v 一、分析 直接去它官网&#xff0c;滑动滑块打开控制台瞅瞅 可以看…

Flask学习笔记_异步论坛(四)

Flask学习笔记_异步论坛&#xff08;四&#xff09; 1.配置和数据库链接1.exts.py里面实例化sqlalchemy数据库2.config.py配置app和数据库信息3.app.py导入exts和config并初始化到app上 2.创建用户模型并映射到数据库1.models/auth.py创建用户模型2.app.py导入模型并用flask-mi…

解决Debian10乱码以及远程连接ssh的问题

文章目录 解决Debian10乱码Debian10配置ssh 解决Debian10乱码 下载locales apt-get install locales配置语言 dpkg-reconfigure locales输入上述命令后会进入到以下页面【空格为选中&#xff0c;回车下一个页面】 在这个页面里我们按空格选中如图的选项&#xff0c;然后回…