【机器学习】Gradient Descent for Logistic Regression

news2024/11/15 13:56:21

Gradient Descent for Logistic Regression

    • 1. 数据集(多变量)
    • 2. 逻辑梯度下降
    • 3. 梯度下降的实现及代码描述
      • 3.1 计算梯度
      • 3.2 梯度下降
    • 4. 数据集(单变量)
    • 附录

导入所需的库

import copy, math
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import  dlc, plot_data, plt_tumor_data, sigmoid, compute_cost_logistic
from plt_quad_logistic import plt_quad_logistic, plt_prob
plt.style.use('./deeplearning.mplstyle')

1. 数据集(多变量)

X_train = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train = np.array([0, 0, 0, 1, 1, 1])
fig,ax = plt.subplots(1,1,figsize=(4,4))
plot_data(X_train, y_train, ax)

ax.axis([0, 4, 0, 3.5])
ax.set_ylabel('$x_1$', fontsize=12)
ax.set_xlabel('$x_0$', fontsize=12)
plt.show()

在这里插入图片描述

2. 逻辑梯度下降

梯度下降计算公式:
repeat until convergence:    {        w j = w j − α ∂ J ( w , b ) ∂ w j    for j := 0..n-1            b = b − α ∂ J ( w , b ) ∂ b } \begin{align*} &\text{repeat until convergence:} \; \lbrace \\ & \; \; \;w_j = w_j - \alpha \frac{\partial J(\mathbf{w},b)}{\partial w_j} \tag{1} \; & \text{for j := 0..n-1} \\ & \; \; \; \; \;b = b - \alpha \frac{\partial J(\mathbf{w},b)}{\partial b} \\ &\rbrace \end{align*} repeat until convergence:{wj=wjαwjJ(w,b)b=bαbJ(w,b)}for j := 0..n-1(1)

其中,对于所有的 j j j 每次迭代同时更新 w j w_j wj ,
∂ J ( w , b ) ∂ w j = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) x j ( i ) ∂ J ( w , b ) ∂ b = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) \begin{align*} \frac{\partial J(\mathbf{w},b)}{\partial w_j} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_{j}^{(i)} \tag{2} \\ \frac{\partial J(\mathbf{w},b)}{\partial b} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \tag{3} \end{align*} wjJ(w,b)bJ(w,b)=m1i=0m1(fw,b(x(i))y(i))xj(i)=m1i=0m1(fw,b(x(i))y(i))(2)(3)

  • m 是训练集样例的数量
  • f w , b ( x ( i ) ) f_{\mathbf{w},b}(x^{(i)}) fw,b(x(i)) 是模型预测值, y ( i ) y^{(i)} y(i) 是目标值
  • 对于逻辑回归模型
    z = w ⋅ x + b z = \mathbf{w} \cdot \mathbf{x} + b z=wx+b
    f w , b ( x ) = g ( z ) f_{\mathbf{w},b}(x) = g(z) fw,b(x)=g(z)
    其中 g ( z ) g(z) g(z) 是 sigmoid 函数: g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

3. 梯度下降的实现及代码描述

实现梯度下降算法需要两步:

  • 循环实现上面等式(1). 即下面的 gradient_descent
  • 当前梯度的计算等式(2, 3). 即下面的 compute_gradient_logistic

3.1 计算梯度

对于所有的 w j w_j wj b b b,实现等式 (2),(3)

  • 初始化变量计算 dj_dwdj_db

  • 对每个样例:

    • 计算误差 g ( w ⋅ x ( i ) + b ) − y ( i ) g(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) - \mathbf{y}^{(i)} g(wx(i)+b)y(i)
    • 对于这个样例中的每个输入值 x j ( i ) x_{j}^{(i)} xj(i) ,
      • 误差乘以输入值 x j ( i ) x_{j}^{(i)} xj(i), 然后加到对应的 dj_dw 中. (上述等式2)
    • 累加误差到 dj_db (上述等式3)
  • dj_dbdj_dw都除以样例总数 m m m

  • 在Numpy中 x ( i ) \mathbf{x}^{(i)} x(i)X[i,:] 或者X[i] x j ( i ) x_{j}^{(i)} xj(i)X[i,j]

代码描述:

def compute_gradient_logistic(X, y, w, b): 
    """
    Computes the gradient for linear regression 
 
    Args:
      X (ndarray (m,n): Data, m examples with n features
      y (ndarray (m,)): target values
      w (ndarray (n,)): model parameters  
      b (scalar)      : model parameter
    Returns
      dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. 
      dj_db (scalar)      : The gradient of the cost w.r.t. the parameter b. 
    """
    m,n = X.shape
    dj_dw = np.zeros((n,))                           #(n,)
    dj_db = 0.

    for i in range(m):
        f_wb_i = sigmoid(np.dot(X[i],w) + b)          #(n,)(n,)=scalar
        err_i  = f_wb_i  - y[i]                       #scalar
        for j in range(n):
            dj_dw[j] = dj_dw[j] + err_i * X[i,j]      #scalar
        dj_db = dj_db + err_i
    dj_dw = dj_dw/m                                   #(n,)
    dj_db = dj_db/m                                   #scalar
        
    return dj_db, dj_dw  

测试一下

X_tmp = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_tmp = np.array([0, 0, 0, 1, 1, 1])
w_tmp = np.array([2.,3.])
b_tmp = 1.
dj_db_tmp, dj_dw_tmp = compute_gradient_logistic(X_tmp, y_tmp, w_tmp, b_tmp)
print(f"dj_db: {dj_db_tmp}" )
print(f"dj_dw: {dj_dw_tmp.tolist()}" )

在这里插入图片描述

3.2 梯度下降

实现上述公式(1),代码为:

def gradient_descent(X, y, w_in, b_in, alpha, num_iters): 
    """
    Performs batch gradient descent
    
    Args:
      X (ndarray (m,n)   : Data, m examples with n features
      y (ndarray (m,))   : target values
      w_in (ndarray (n,)): Initial values of model parameters  
      b_in (scalar)      : Initial values of model parameter
      alpha (float)      : Learning rate
      num_iters (scalar) : number of iterations to run gradient descent
      
    Returns:
      w (ndarray (n,))   : Updated values of parameters
      b (scalar)         : Updated value of parameter 
    """
    # An array to store cost J and w's at each iteration primarily for graphing later
    J_history = []
    w = copy.deepcopy(w_in)  #avoid modifying global w within function
    b = b_in
    
    for i in range(num_iters):
        # Calculate the gradient and update the parameters
        dj_db, dj_dw = compute_gradient_logistic(X, y, w, b)   

        # Update Parameters using w, b, alpha and gradient
        w = w - alpha * dj_dw               
        b = b - alpha * dj_db               
      
        # Save cost J at each iteration
        if i<100000:      # prevent resource exhaustion 
            J_history.append( compute_cost_logistic(X, y, w, b) )

        # Print cost every at intervals 10 times or as many iterations if < 10
        if i% math.ceil(num_iters / 10) == 0:
            print(f"Iteration {i:4d}: Cost {J_history[-1]}   ")
        
    return w, b, J_history         #return final w,b and J history for graphing

运行一下:

w_tmp  = np.zeros_like(X_train[0])
b_tmp  = 0.
alph = 0.1
iters = 10000

w_out, b_out, _ = gradient_descent(X_train, y_train, w_tmp, b_tmp, alph, iters) 
print(f"\nupdated parameters: w:{w_out}, b:{b_out}")

在这里插入图片描述
梯度下降的结果可视化:

fig,ax = plt.subplots(1,1,figsize=(5,4))
# plot the probability 
plt_prob(ax, w_out, b_out)

# Plot the original data
ax.set_ylabel(r'$x_1$')
ax.set_xlabel(r'$x_0$')   
ax.axis([0, 4, 0, 3.5])
plot_data(X_train,y_train,ax)

# Plot the decision boundary
x0 = -b_out/w_out[1]
x1 = -b_out/w_out[0]
ax.plot([0,x0],[x1,0], c=dlc["dlblue"], lw=1)
plt.show()

在这里插入图片描述
在上图中,阴影部分表示概率 y=1,决策边界是概率为0.5的直线。

4. 数据集(单变量)

导入数据绘图可视化,此时参数为 w w w, b b b

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])

fig,ax = plt.subplots(1,1,figsize=(4,3))
plt_tumor_data(x_train, y_train, ax)
plt.show()

在这里插入图片描述

w_range = np.array([-1, 7])
b_range = np.array([1, -14])
quad = plt_quad_logistic( x_train, y_train, w_range, b_range )

在这里插入图片描述

附录

lab_utils_common.py 源码:

"""
lab_utils_common
   contains common routines and variable definitions
   used by all the labs in this week.
   by contrast, specific, large plotting routines will be in separate files
   and are generally imported into the week where they are used.
   those files will import this file
"""
import copy
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import FancyArrowPatch
from ipywidgets import Output

np.set_printoptions(precision=2)

dlc = dict(dlblue = '#0096ff', dlorange = '#FF9300', dldarkred='#C00000', dlmagenta='#FF40FF', dlpurple='#7030A0')
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'
dlcolors = [dlblue, dlorange, dldarkred, dlmagenta, dlpurple]
plt.style.use('./deeplearning.mplstyle')

def sigmoid(z):
    """
    Compute the sigmoid of z

    Parameters
    ----------
    z : array_like
        A scalar or numpy array of any size.

    Returns
    -------
     g : array_like
         sigmoid(z)
    """
    z = np.clip( z, -500, 500 )           # protect against overflow
    g = 1.0/(1.0+np.exp(-z))

    return g

##########################################################
# Regression Routines
##########################################################

def predict_logistic(X, w, b):
    """ performs prediction """
    return sigmoid(X @ w + b)

def predict_linear(X, w, b):
    """ performs prediction """
    return X @ w + b

def compute_cost_logistic(X, y, w, b, lambda_=0, safe=False):
    """
    Computes cost using logistic loss, non-matrix version

    Args:
      X (ndarray): Shape (m,n)  matrix of examples with n features
      y (ndarray): Shape (m,)   target values
      w (ndarray): Shape (n,)   parameters for prediction
      b (scalar):               parameter  for prediction
      lambda_ : (scalar, float) Controls amount of regularization, 0 = no regularization
      safe : (boolean)          True-selects under/overflow safe algorithm
    Returns:
      cost (scalar): cost
    """

    m,n = X.shape
    cost = 0.0
    for i in range(m):
        z_i    = np.dot(X[i],w) + b                                             #(n,)(n,) or (n,) ()
        if safe:  #avoids overflows
            cost += -(y[i] * z_i ) + log_1pexp(z_i)
        else:
            f_wb_i = sigmoid(z_i)                                                   #(n,)
            cost  += -y[i] * np.log(f_wb_i) - (1 - y[i]) * np.log(1 - f_wb_i)       # scalar
    cost = cost/m

    reg_cost = 0
    if lambda_ != 0:
        for j in range(n):
            reg_cost += (w[j]**2)                                               # scalar
        reg_cost = (lambda_/(2*m))*reg_cost

    return cost + reg_cost


def log_1pexp(x, maximum=20):
    ''' approximate log(1+exp^x)
        https://stats.stackexchange.com/questions/475589/numerical-computation-of-cross-entropy-in-practice
    Args:
    x   : (ndarray Shape (n,1) or (n,)  input
    out : (ndarray Shape matches x      output ~= np.log(1+exp(x))
    '''

    out  = np.zeros_like(x,dtype=float)
    i    = x <= maximum
    ni   = np.logical_not(i)

    out[i]  = np.log(1 + np.exp(x[i]))
    out[ni] = x[ni]
    return out


def compute_cost_matrix(X, y, w, b, logistic=False, lambda_=0, safe=True):
    """
    Computes the cost using  using matrices
    Args:
      X : (ndarray, Shape (m,n))          matrix of examples
      y : (ndarray  Shape (m,) or (m,1))  target value of each example
      w : (ndarray  Shape (n,) or (n,1))  Values of parameter(s) of the model
      b : (scalar )                       Values of parameter of the model
      verbose : (Boolean) If true, print out intermediate value f_wb
    Returns:
      total_cost: (scalar)                cost
    """
    m = X.shape[0]
    y = y.reshape(-1,1)             # ensure 2D
    w = w.reshape(-1,1)             # ensure 2D
    if logistic:
        if safe:  #safe from overflow
            z = X @ w + b                                                           #(m,n)(n,1)=(m,1)
            cost = -(y * z) + log_1pexp(z)
            cost = np.sum(cost)/m                                                   # (scalar)
        else:
            f    = sigmoid(X @ w + b)                                               # (m,n)(n,1) = (m,1)
            cost = (1/m)*(np.dot(-y.T, np.log(f)) - np.dot((1-y).T, np.log(1-f)))   # (1,m)(m,1) = (1,1)
            cost = cost[0,0]                                                        # scalar
    else:
        f    = X @ w + b                                                        # (m,n)(n,1) = (m,1)
        cost = (1/(2*m)) * np.sum((f - y)**2)                                   # scalar

    reg_cost = (lambda_/(2*m)) * np.sum(w**2)                                   # scalar

    total_cost = cost + reg_cost                                                # scalar

    return total_cost                                                           # scalar

def compute_gradient_matrix(X, y, w, b, logistic=False, lambda_=0):
    """
    Computes the gradient using matrices

    Args:
      X : (ndarray, Shape (m,n))          matrix of examples
      y : (ndarray  Shape (m,) or (m,1))  target value of each example
      w : (ndarray  Shape (n,) or (n,1))  Values of parameters of the model
      b : (scalar )                       Values of parameter of the model
      logistic: (boolean)                 linear if false, logistic if true
      lambda_:  (float)                   applies regularization if non-zero
    Returns
      dj_dw: (array_like Shape (n,1))     The gradient of the cost w.r.t. the parameters w
      dj_db: (scalar)                     The gradient of the cost w.r.t. the parameter b
    """
    m = X.shape[0]
    y = y.reshape(-1,1)             # ensure 2D
    w = w.reshape(-1,1)             # ensure 2D

    f_wb  = sigmoid( X @ w + b ) if logistic else  X @ w + b      # (m,n)(n,1) = (m,1)
    err   = f_wb - y                                              # (m,1)
    dj_dw = (1/m) * (X.T @ err)                                   # (n,m)(m,1) = (n,1)
    dj_db = (1/m) * np.sum(err)                                   # scalar

    dj_dw += (lambda_/m) * w        # regularize                  # (n,1)

    return dj_db, dj_dw                                           # scalar, (n,1)

def gradient_descent(X, y, w_in, b_in, alpha, num_iters, logistic=False, lambda_=0, verbose=True):
    """
    Performs batch gradient descent to learn theta. Updates theta by taking
    num_iters gradient steps with learning rate alpha

    Args:
      X (ndarray):    Shape (m,n)         matrix of examples
      y (ndarray):    Shape (m,) or (m,1) target value of each example
      w_in (ndarray): Shape (n,) or (n,1) Initial values of parameters of the model
      b_in (scalar):                      Initial value of parameter of the model
      logistic: (boolean)                 linear if false, logistic if true
      lambda_:  (float)                   applies regularization if non-zero
      alpha (float):                      Learning rate
      num_iters (int):                    number of iterations to run gradient descent

    Returns:
      w (ndarray): Shape (n,) or (n,1)    Updated values of parameters; matches incoming shape
      b (scalar):                         Updated value of parameter
    """
    # An array to store cost J and w's at each iteration primarily for graphing later
    J_history = []
    w = copy.deepcopy(w_in)  #avoid modifying global w within function
    b = b_in
    w = w.reshape(-1,1)      #prep for matrix operations
    y = y.reshape(-1,1)

    for i in range(num_iters):

        # Calculate the gradient and update the parameters
        dj_db,dj_dw = compute_gradient_matrix(X, y, w, b, logistic, lambda_)

        # Update Parameters using w, b, alpha and gradient
        w = w - alpha * dj_dw
        b = b - alpha * dj_db

        # Save cost J at each iteration
        if i<100000:      # prevent resource exhaustion
            J_history.append( compute_cost_matrix(X, y, w, b, logistic, lambda_) )

        # Print cost every at intervals 10 times or as many iterations if < 10
        if i% math.ceil(num_iters / 10) == 0:
            if verbose: print(f"Iteration {i:4d}: Cost {J_history[-1]}   ")

    return w.reshape(w_in.shape), b, J_history  #return final w,b and J history for graphing

def zscore_normalize_features(X):
    """
    computes  X, zcore normalized by column

    Args:
      X (ndarray): Shape (m,n) input data, m examples, n features

    Returns:
      X_norm (ndarray): Shape (m,n)  input normalized by column
      mu (ndarray):     Shape (n,)   mean of each feature
      sigma (ndarray):  Shape (n,)   standard deviation of each feature
    """
    # find the mean of each column/feature
    mu     = np.mean(X, axis=0)                 # mu will have shape (n,)
    # find the standard deviation of each column/feature
    sigma  = np.std(X, axis=0)                  # sigma will have shape (n,)
    # element-wise, subtract mu for that column from each example, divide by std for that column
    X_norm = (X - mu) / sigma

    return X_norm, mu, sigma

#check our work
#from sklearn.preprocessing import scale
#scale(X_orig, axis=0, with_mean=True, with_std=True, copy=True)

######################################################
# Common Plotting Routines
######################################################


def plot_data(X, y, ax, pos_label="y=1", neg_label="y=0", s=80, loc='best' ):
    """ plots logistic data with two axis """
    # Find Indices of Positive and Negative Examples
    pos = y == 1
    neg = y == 0
    pos = pos.reshape(-1,)  #work with 1D or 1D y vectors
    neg = neg.reshape(-1,)

    # Plot examples
    ax.scatter(X[pos, 0], X[pos, 1], marker='x', s=s, c = 'red', label=pos_label)
    ax.scatter(X[neg, 0], X[neg, 1], marker='o', s=s, label=neg_label, facecolors='none', edgecolors=dlblue, lw=3)
    ax.legend(loc=loc)

    ax.figure.canvas.toolbar_visible = False
    ax.figure.canvas.header_visible = False
    ax.figure.canvas.footer_visible = False

def plt_tumor_data(x, y, ax):
    """ plots tumor data on one axis """
    pos = y == 1
    neg = y == 0

    ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")
    ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none', edgecolors=dlblue,lw=3)
    ax.set_ylim(-0.175,1.1)
    ax.set_ylabel('y')
    ax.set_xlabel('Tumor Size')
    ax.set_title("Logistic Regression on Categorical Data")

    ax.figure.canvas.toolbar_visible = False
    ax.figure.canvas.header_visible = False
    ax.figure.canvas.footer_visible = False

# Draws a threshold at 0.5
def draw_vthresh(ax,x):
    """ draws a threshold """
    ylim = ax.get_ylim()
    xlim = ax.get_xlim()
    ax.fill_between([xlim[0], x], [ylim[1], ylim[1]], alpha=0.2, color=dlblue)
    ax.fill_between([x, xlim[1]], [ylim[1], ylim[1]], alpha=0.2, color=dldarkred)
    ax.annotate("z >= 0", xy= [x,0.5], xycoords='data',
                xytext=[30,5],textcoords='offset points')
    d = FancyArrowPatch(
        posA=(x, 0.5), posB=(x+3, 0.5), color=dldarkred,
        arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',
    )
    ax.add_artist(d)
    ax.annotate("z < 0", xy= [x,0.5], xycoords='data',
                 xytext=[-50,5],textcoords='offset points', ha='left')
    f = FancyArrowPatch(
        posA=(x, 0.5), posB=(x-3, 0.5), color=dlblue,
        arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',
    )
    ax.add_artist(f)

plt_quad_logistic.py 源码:

"""
plt_quad_logistic.py
    interactive plot and supporting routines showing logistic regression
"""

import time
from matplotlib import cm
import matplotlib.colors as colors
from matplotlib.gridspec import GridSpec
from matplotlib.widgets import Button
from matplotlib.patches import FancyArrowPatch
from ipywidgets import Output
from lab_utils_common import np, plt, dlc, dlcolors, sigmoid, compute_cost_matrix, gradient_descent

# for debug
#output = Output() # sends hidden error messages to display when using widgets
#display(output)

class plt_quad_logistic:
    ''' plots a quad plot showing logistic regression '''
    # pylint: disable=too-many-instance-attributes
    # pylint: disable=too-many-locals
    # pylint: disable=missing-function-docstring
    # pylint: disable=attribute-defined-outside-init
    def __init__(self, x_train,y_train, w_range, b_range):
        # setup figure
        fig = plt.figure( figsize=(10,6))
        fig.canvas.toolbar_visible = False
        fig.canvas.header_visible = False
        fig.canvas.footer_visible = False
        fig.set_facecolor('#ffffff') #white
        gs  = GridSpec(2, 2, figure=fig)
        ax0 = fig.add_subplot(gs[0, 0])
        ax1 = fig.add_subplot(gs[0, 1])
        ax2 = fig.add_subplot(gs[1, 0],  projection='3d')
        ax3 = fig.add_subplot(gs[1,1])
        pos = ax3.get_position().get_points()  ##[[lb_x,lb_y], [rt_x, rt_y]]
        h = 0.05 
        width = 0.2
        axcalc   = plt.axes([pos[1,0]-width, pos[1,1]-h, width, h])  #lx,by,w,h
        ax = np.array([ax0, ax1, ax2, ax3, axcalc])
        self.fig = fig
        self.ax = ax
        self.x_train = x_train
        self.y_train = y_train

        self.w = 0. #initial point, non-array
        self.b = 0.

        # initialize subplots
        self.dplot = data_plot(ax[0], x_train, y_train, self.w, self.b)
        self.con_plot = contour_and_surface_plot(ax[1], ax[2], x_train, y_train, w_range, b_range, self.w, self.b)
        self.cplot = cost_plot(ax[3])

        # setup events
        self.cid = fig.canvas.mpl_connect('button_press_event', self.click_contour)
        self.bcalc = Button(axcalc, 'Run Gradient Descent \nfrom current w,b (click)', color=dlc["dlorange"])
        self.bcalc.on_clicked(self.calc_logistic)

#    @output.capture()  # debug
    def click_contour(self, event):
        ''' called when click in contour '''
        if event.inaxes == self.ax[1]:   #contour plot
            self.w = event.xdata
            self.b = event.ydata

            self.cplot.re_init()
            self.dplot.update(self.w, self.b)
            self.con_plot.update_contour_wb_lines(self.w, self.b)
            self.con_plot.path.re_init(self.w, self.b)

            self.fig.canvas.draw()

#    @output.capture()  # debug
    def calc_logistic(self, event):
        ''' called on run gradient event '''
        for it in [1, 8,16,32,64,128,256,512,1024,2048,4096]:
            w, self.b, J_hist = gradient_descent(self.x_train.reshape(-1,1), self.y_train.reshape(-1,1),
                                                 np.array(self.w).reshape(-1,1), self.b, 0.1, it,
                                                 logistic=True, lambda_=0, verbose=False)
            self.w = w[0,0]
            self.dplot.update(self.w, self.b)
            self.con_plot.update_contour_wb_lines(self.w, self.b)
            self.con_plot.path.add_path_item(self.w,self.b)
            self.cplot.add_cost(J_hist)

            time.sleep(0.3)
            self.fig.canvas.draw()


class data_plot:
    ''' handles data plot '''
    # pylint: disable=missing-function-docstring
    # pylint: disable=attribute-defined-outside-init
    def __init__(self, ax, x_train, y_train, w, b):
        self.ax = ax
        self.x_train = x_train
        self.y_train = y_train
        self.m = x_train.shape[0]
        self.w = w
        self.b = b

        self.plt_tumor_data()
        self.draw_logistic_lines(firsttime=True)
        self.mk_cost_lines(firsttime=True)

        self.ax.autoscale(enable=False) # leave plot scales the same after initial setup

    def plt_tumor_data(self):
        x = self.x_train
        y = self.y_train
        pos = y == 1
        neg = y == 0
        self.ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")
        self.ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none',
                   edgecolors=dlc["dlblue"],lw=3)
        self.ax.set_ylim(-0.175,1.1)
        self.ax.set_ylabel('y')
        self.ax.set_xlabel('Tumor Size')
        self.ax.set_title("Logistic Regression on Categorical Data")

    def update(self, w, b):
        self.w = w
        self.b = b
        self.draw_logistic_lines()
        self.mk_cost_lines()

    def draw_logistic_lines(self, firsttime=False):
        if not firsttime:
            self.aline[0].remove()
            self.bline[0].remove()
            self.alegend.remove()

        xlim  = self.ax.get_xlim()
        x_hat = np.linspace(*xlim, 30)
        y_hat = sigmoid(np.dot(x_hat.reshape(-1,1), self.w) + self.b)
        self.aline = self.ax.plot(x_hat, y_hat, color=dlc["dlblue"],
                                     label="y = sigmoid(z)")
        f_wb = np.dot(x_hat.reshape(-1,1), self.w) + self.b
        self.bline = self.ax.plot(x_hat, f_wb, color=dlc["dlorange"], lw=1,
                                     label=f"z = {np.squeeze(self.w):0.2f}x+({self.b:0.2f})")
        self.alegend = self.ax.legend(loc='upper left')

    def mk_cost_lines(self, firsttime=False):
        ''' makes vertical cost lines'''
        if not firsttime:
            for artist in self.cost_items:
                artist.remove()
        self.cost_items = []
        cstr = f"cost = (1/{self.m})*("
        ctot = 0
        label = 'cost for point'
        addedbreak = False
        for p in zip(self.x_train,self.y_train):
            f_wb_p = sigmoid(self.w*p[0]+self.b)
            c_p = compute_cost_matrix(p[0].reshape(-1,1), p[1],np.array(self.w), self.b, logistic=True, lambda_=0, safe=True)
            c_p_txt = c_p
            a = self.ax.vlines(p[0], p[1],f_wb_p, lw=3, color=dlc["dlpurple"], ls='dotted', label=label)
            label='' #just one
            cxy = [p[0], p[1] + (f_wb_p-p[1])/2]
            b = self.ax.annotate(f'{c_p_txt:0.1f}', xy=cxy, xycoords='data',color=dlc["dlpurple"],
                        xytext=(5, 0), textcoords='offset points')
            cstr += f"{c_p_txt:0.1f} +"
            if len(cstr) > 38 and addedbreak is False:
                cstr += "\n"
                addedbreak = True
            ctot += c_p
            self.cost_items.extend((a,b))
        ctot = ctot/(len(self.x_train))
        cstr = cstr[:-1] + f") = {ctot:0.2f}"
        ## todo.. figure out how to get this textbox to extend to the width of the subplot
        c = self.ax.text(0.05,0.02,cstr, transform=self.ax.transAxes, color=dlc["dlpurple"])
        self.cost_items.append(c)


class contour_and_surface_plot:
    ''' plots combined in class as they have similar operations '''
    # pylint: disable=missing-function-docstring
    # pylint: disable=attribute-defined-outside-init
    def __init__(self, axc, axs, x_train, y_train, w_range, b_range, w, b):

        self.x_train = x_train
        self.y_train = y_train
        self.axc = axc
        self.axs = axs

        #setup useful ranges and common linspaces
        b_space  = np.linspace(*b_range, 100)
        w_space  = np.linspace(*w_range, 100)

        # get cost for w,b ranges for contour and 3D
        tmp_b,tmp_w = np.meshgrid(b_space,w_space)
        z = np.zeros_like(tmp_b)
        for i in range(tmp_w.shape[0]):
            for j in range(tmp_w.shape[1]):
                z[i,j] = compute_cost_matrix(x_train.reshape(-1,1), y_train, tmp_w[i,j], tmp_b[i,j],
                                             logistic=True, lambda_=0, safe=True)
                if z[i,j] == 0:
                    z[i,j] = 1e-9

        ### plot contour ###
        CS = axc.contour(tmp_w, tmp_b, np.log(z),levels=12, linewidths=2, alpha=0.7,colors=dlcolors)
        axc.set_title('log(Cost(w,b))')
        axc.set_xlabel('w', fontsize=10)
        axc.set_ylabel('b', fontsize=10)
        axc.set_xlim(w_range)
        axc.set_ylim(b_range)
        self.update_contour_wb_lines(w, b, firsttime=True)
        axc.text(0.7,0.05,"Click to choose w,b",  bbox=dict(facecolor='white', ec = 'black'), fontsize = 10,
                transform=axc.transAxes, verticalalignment = 'center', horizontalalignment= 'center')

        #Surface plot of the cost function J(w,b)
        axs.plot_surface(tmp_w, tmp_b, z,  cmap = cm.jet, alpha=0.3, antialiased=True)
        axs.plot_wireframe(tmp_w, tmp_b, z, color='k', alpha=0.1)
        axs.set_xlabel("$w$")
        axs.set_ylabel("$b$")
        axs.zaxis.set_rotate_label(False)
        axs.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
        axs.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
        axs.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
        axs.set_zlabel("J(w, b)", rotation=90)
        axs.view_init(30, -120)

        axs.autoscale(enable=False)
        axc.autoscale(enable=False)

        self.path = path(self.w,self.b, self.axc)  # initialize an empty path, avoids existance check

    def update_contour_wb_lines(self, w, b, firsttime=False):
        self.w = w
        self.b = b
        cst = compute_cost_matrix(self.x_train.reshape(-1,1), self.y_train, np.array(self.w), self.b,
                                  logistic=True, lambda_=0, safe=True)

        # remove lines and re-add on contour plot and 3d plot
        if not firsttime:
            for artist in self.dyn_items:
                artist.remove()
        a = self.axc.scatter(self.w, self.b, s=100, color=dlc["dlblue"], zorder= 10, label="cost with \ncurrent w,b")
        b = self.axc.hlines(self.b, self.axc.get_xlim()[0], self.w, lw=4, color=dlc["dlpurple"], ls='dotted')
        c = self.axc.vlines(self.w, self.axc.get_ylim()[0] ,self.b, lw=4, color=dlc["dlpurple"], ls='dotted')
        d = self.axc.annotate(f"Cost: {cst:0.2f}", xy= (self.w, self.b), xytext = (4,4), textcoords = 'offset points',
                           bbox=dict(facecolor='white'), size = 10)
        #Add point in 3D surface plot
        e = self.axs.scatter3D(self.w, self.b, cst , marker='X', s=100)

        self.dyn_items = [a,b,c,d,e]


class cost_plot:
    """ manages cost plot for plt_quad_logistic """
    # pylint: disable=missing-function-docstring
    # pylint: disable=attribute-defined-outside-init
    def __init__(self,ax):
        self.ax = ax
        self.ax.set_ylabel("log(cost)")
        self.ax.set_xlabel("iteration")
        self.costs = []
        self.cline = self.ax.plot(0,0, color=dlc["dlblue"])

    def re_init(self):
        self.ax.clear()
        self.__init__(self.ax)

    def add_cost(self,J_hist):
        self.costs.extend(J_hist)
        self.cline[0].remove()
        self.cline = self.ax.plot(self.costs)

class path:
    ''' tracks paths during gradient descent on contour plot '''
    # pylint: disable=missing-function-docstring
    # pylint: disable=attribute-defined-outside-init
    def __init__(self, w, b, ax):
        ''' w, b at start of path '''
        self.path_items = []
        self.w = w
        self.b = b
        self.ax = ax

    def re_init(self, w, b):
        for artist in self.path_items:
            artist.remove()
        self.path_items = []
        self.w = w
        self.b = b

    def add_path_item(self, w, b):
        a = FancyArrowPatch(
            posA=(self.w, self.b), posB=(w, b), color=dlc["dlblue"],
            arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',
        )
        self.ax.add_artist(a)
        self.path_items.append(a)
        self.w = w
        self.b = b

#-----------
# related to the logistic gradient descent lab
#----------

def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100):
    """ truncates color map """
    new_cmap = colors.LinearSegmentedColormap.from_list(
        'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval),
        cmap(np.linspace(minval, maxval, n)))
    return new_cmap

def plt_prob(ax, w_out,b_out):
    """ plots a decision boundary but include shading to indicate the probability """
    #setup useful ranges and common linspaces
    x0_space  = np.linspace(0, 4 , 100)
    x1_space  = np.linspace(0, 4 , 100)

    # get probability for x0,x1 ranges
    tmp_x0,tmp_x1 = np.meshgrid(x0_space,x1_space)
    z = np.zeros_like(tmp_x0)
    for i in range(tmp_x0.shape[0]):
        for j in range(tmp_x1.shape[1]):
            z[i,j] = sigmoid(np.dot(w_out, np.array([tmp_x0[i,j],tmp_x1[i,j]])) + b_out)


    cmap = plt.get_cmap('Blues')
    new_cmap = truncate_colormap(cmap, 0.0, 0.5)
    pcm = ax.pcolormesh(tmp_x0, tmp_x1, z,
                   norm=cm.colors.Normalize(vmin=0, vmax=1),
                   cmap=new_cmap, shading='nearest', alpha = 0.9)
    ax.figure.colorbar(pcm, ax=ax)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/817707.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Django的生命周期流程图(补充)、路由层urls.py文件、无名分组和有名分组、反向解析(无名反向解析、有名反向解析)、路由分发、伪静态

一、orm的增删改查方法&#xff08;补充&#xff09; 1. 查询resmodels.表名(类名).objects.all()[0]resmodels.表名(类名).objects.filter(usernameusername, passwordpassword).all()res models.表名(类名).objects.first() # 判断&#xff0c;判断数据是否有# res如果查询…

如何通过github学生包认证(远程不在学校或在校但位置报错均可用)

如何通过github学生包认证 在经历11次被拒绝&#xff0c;查阅多方博客后&#xff0c;终于成功通过了github的学生认证&#xff0c;材料每次重复的话github又会让你提交不同的材料&#xff0c;博主最后都已经要没有材料可以证明自己是学生了&#xff0c;不得不说这个认证是真的…

git使用(由浅到深)

目录流程图 1. 分布式版本控制与集中式版本控制 1.1 集中式版本控制 集中式版本控制系统有:CVS和SVN它们的主要特点是单一的集中管理的服务器&#xff0c;保存所有文件的修订版本&#xff1b;协同开发人员通过客户端连接到这台服务器&#xff0c;取出最新的文件或者提交更新…

【C++】通讯录管理系统

1.系统功能介绍与展示 2.创建项目 3.菜单功能 代码&#xff1a; //-封装函数显示该界面 如 void showMenu() //-在main函数中调用封装好的函数 #include <iostream> using namespace std;//-菜单界面 void showMenu() {cout << "***************************…

Azure pipeline自动化打包发布

pipeline自动化&#xff0c;提交代码后&#xff0c;就自动打包&#xff0c;打包成功后自动发布 第一步 pipeline提交代码后&#xff0c;自动打包。 1 在Repos,分支里选择要触发的分支&#xff0c;这里选择cn_china,对该分支设置分支策略 2 在生产验证中增加新的策略 3 在分支安…

【Linux】yum工具的认识及使用

【Linux】yum工具的认识及使用 1.知识点补充2.yum是什么3.yum常用指令3.1查看软件安装包3.1.1关于rzsz 3.2安装软件3.3卸载软件 4.yum扩展4.1扩展14.2扩展24.3扩展3 什么是工具&#xff1f; 本质上也是指令 1.知识点补充 1.我们一般安装软件&#xff0c;是不是需要把软件安装…

LabVIEW FPGA开发实时滑动摩擦系统

LabVIEW FPGA开发实时滑动摩擦系统 由于非线性摩擦效应的建模和补偿的固有困难&#xff0c;摩擦系统的运动控制已被广泛研究。最近&#xff0c;人们更加关注滑动动力学和滑动定位&#xff0c;作为传统机器人定位的低成本和更灵活的驱动替代方案。摩擦控制器设计和适当选择基础…

JVM类加载器的作用和层次结构

类加载器的作用 1)通过一个类的全限定名来获取定义此类的二进制字节流。 2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。 3)在内存中生成一个代表这个类的java.lang.Class对象,这个对象存放在方法区中。这个对象将作为程序访问方法区中的这些数据的外部接…

【嵌入式学习笔记】嵌入式入门2——中断(外部中断)

1.什么是中断 打断CPU执行正常的程序&#xff0c;转而处理紧急程序&#xff0c;然后返回原暂停的程序继续运行&#xff0c;就叫中断 1.1.中断的作用与意义 作用1&#xff1a;实时控制在确定时间内对相应事件作出响应——定时器中断作用2&#xff1a;故障处理检测到故障&…

Linux内核的I2C驱动框架详解------这应该是我目前600多篇博客中耗时最长的一篇博客

目录 1 I2C驱动整体框架图 2 I2C控制器 2.1 I2C控制器设备--I2C控制器在内核中也被看做一个设备 2.2 i2c控制器驱动程序 2.3 platform_driver结构体中的probe函数做了什么 2.3.1 疑问&#xff1a; i2cdev_notifier_call函数哪里来的 2.3.2 疑问&#xff1a;为什么有两…

重生之我要学C++第六天

这篇文章的主要内容是const以及权限问题、static关键字、友元函数和友元类&#xff0c;希望对大家有所帮助&#xff0c;点赞收藏评论支持一下吧&#xff01; 更多优质内容跳转&#xff1a; 专栏&#xff1a;重生之C启程(文章平均质量分93) 目录 const以及权限问题 1.const修饰…

管理类联考——数学——可视化篇——代数即几何

数形结合百般好 代数即几何 两和三个数的完全平方和 https://www.bilibili.com/video/BV1zh4y137AY/ 立方差和立方和公式 通过图形得到立方差公式&#xff0c;将b换成-b&#xff0c;得到立方和公式 平方数列求和 https://www.bilibili.com/video/BV1vz4y1q75D/ 立方数列…

[PAT乙级] 1029 旧键盘 C++实现

题目描述&#xff1a; 旧键盘上坏了几个键&#xff0c;于是在敲一段文字的时候&#xff0c;对应的字符就不会出现。现在给出应该输入的一段文字、以及实际被输入的文字&#xff0c;请你列出肯定坏掉的那些键。 输入格式&#xff1a; 输入在 2 行中分别给出应该输入的文字、以…

基于高通QCC5171的对讲机音频数据传输系统设计

一 研发资料准备 二 设计方法 蓝牙连接与配对&#xff1a;使用QCC5171的蓝牙功能&#xff0c;实现设备之间的蓝牙连接和配对。确保设备能够相互识别并建立起稳定的蓝牙连接。 音频采集与处理&#xff1a;将麦克风采集到的音频数据通过QCC5171的ADC&#xff08;模数转换器&…

简单的知识图谱可视化+绘制nx.Graph()时报错TypeError: ‘_AxesStack‘ object is not callable

绘制nx.Graph时报错TypeError: _AxesStack object is not callable 写在最前面知识图谱可视化预期报错可能的原因 原代码原因确认解决后的代码解决&#xff01; 写在最前面 实现一个简单的知识图谱的可视化功能。 使用了NetworkX库来构建知识图谱&#xff0c;并使用matplotlib…

【面试题】 给你十万条数据,怎么样顺滑的渲染出来?

前端面试题库 &#xff08;面试必备&#xff09; 推荐&#xff1a;★★★★★ 地址&#xff1a;前端面试题库 前言 这是一道面试题&#xff0c;这个问题出来的一刹那&#xff0c;很容易想到的就是for循环100000次吧&#xff0c;但是这方案着实让浏览器崩溃啊&…

基于LoRa无线数据传输的温湿度监测预警系统解决方案

为了维护仓储物品的品质&#xff0c;创造适宜的存储环境&#xff0c;就需要实时监测环境的温湿度信息&#xff0c;一旦温湿度出现异常就需要及时调整控制&#xff0c;从而保证品质稳定也能避免损失。 物通博联提供了软硬件一体的工业物联网解决方案&#xff0c;基于温湿度监测…

2023年超越期待的高性能视频剪辑主机推荐| Intel 蝰蛇峡谷测评

1、开箱 蝰蛇峡谷的开箱体验是非常令人兴奋的。首先&#xff0c;打开包装后&#xff0c;你会看到一个精致且高质感的机箱&#xff0c;给人一种专业的感觉。蝰蛇峡谷的外观设计简洁大方&#xff0c;黑色的机箱与红色的Logo相得益彰&#xff0c;展现了其高性能的特点。 在打开机…

文件上传到远程服务器

文件上传 一、上传文件到本地 package com.ruoyi.system.knowledgebase;import com.ruoyi.common.annotation.Anonymous; import com.ruoyi.common.core.domain.AjaxResult; import com.ruoyi.system.domain.SzKnowledge; import com.ruoyi.system.service.ISzKnowledgeServi…

MyBatis缓存-提高检索效率的利器--二级缓存

文章目录 缓存-提高检索效率的利器缓存-官方文档二级缓存基本介绍二级缓存原理图 二级缓存快速入门快速入门注意事项和使用陷阱理解二级缓存策略的参数 四大策略如何禁用二级缓存mybatis 刷新二级缓存的设置 缓存-提高检索效率的利器 缓存-官方文档 文档地址: https://mybati…