《TCP IP网络编程》第十四章

news2024/7/6 20:04:47

第 14 章 多播与广播

14.1 多播

        多播(Multicast)方式的数据传输是基于 UDP 完成的。因此 ,与 UDP 服务器端/客户端的实现方式非常接近。区别在于,UDP 数据传输以单一目标进行,而多播数据同时传递到加入(注册)特定组的大量主机。换言之,采用多播方式时,可以同时向多个主机传递数据

多播的数据传输方式以及流量方面的优点:

多播的数据传输特点可整理如下:

  • 多播服务器端针对特定多播组,只发送 1 次数据。
  • 即使只发送 1 次数据,但该组内的所有客户端都会接收数据。
  • 多播组数可以在 IP 地址范围内任意增加。
  • 加入特定组即可接收发往该多播组的数据。

        多播组是 D 类IP地址(224.0.0.0~239.255.255.255),「加入多播组」可以理解为通过程序完成如下声明:

        在 D 类IP地址中,我希望接收发往目标 239.234.218.234 的多播数据。

        多播是基于 UDP 完成的,也就是说,多播数据包的格式与 UDP 数据包相同。只是与一般的 UDP 数据包不同。向网络传递 1 个多播数据包时,路由器将复制该数据包并传递到多个主机。像这样,多播需要借助路由器完成。如图所示:

        若通过 TCP 或 UDP 向 1000 个主机发送文件,则共需要传递 1000 次。但是此时如果用多播网络传输文件,则只需要发送一次。这时由 1000 台主机构成的网络中的路由器负责复制文件并传递到主机。就因为这种特性,多播主要用于「多媒体数据实时传输」

        另外,理论上可以完成多播通信,但是不少路由器并不支持多播,或即便支持也因网络拥堵问题故意阻断多播。因此,为了在不支持多播的路由器中完成多播通信,也会使用隧道(Tunneling)技术。

路由(Routing)和 TTL(Time to Live,生存时间),以及加入组的办法:

        为了传递多播数据包,必须设置 TTL 。TTL 是 Time to Live的简写,是决定「数据包传递距离」的主要因素TTL 用整数表示,并且每经过一个路由器就减一。TTL 变为 0 时,该数据包就无法再被传递,只能销毁。因此,TTL 的值设置过大将影响网络流量。当然,设置过小,也无法传递到目标。

        接下来是 TTL 的设置方法。TTL 是可以通过第九章的套接字可选项完成的。与设置 TTL 相关的协议层为 IPPROTO_IP ,选项名为 IP_MULTICAST_TTL。因此,可以用如下代码把 TTL 设置为 64:

int send_sock;
int time_live = 64;
...
send_sock=socket(PF_INET,SOCK_DGRAM,0);
setsockopt(send_sock,IPPROTO_IP,IP_MULTICAST_TTL,(void*)&time_live,sizeof(time_live);
...

         加入多播组也通过设置套接字可选项来完成。加入多播组相关的协议层为 IPPROTO_IP,选项名为 IP_ADD_MEMBERSHIP 。可通过如下代码加入多播组:

int recv_sock;
struct ip_mreq join_adr;
...
recv_sock=socket(PF_INET,SOCK_DGRAM,0);
...
join_adr.imr_multiaddr.s_addr="多播组地址信息";
join_adr.imr_interface.s_addr="加入多播组的主机地址信息";
setsockopt(recv_sock,IPPROTO_IP,IP_ADD_MEMBERSHIP,(void*)&join_adr,sizeof(join_adr);
...

        下面是 ip_mreq 结构体的定义:

struct ip_mreq
{
    struct in_addr imr_multiaddr; //写入加入组的IP地址
    struct in_addr imr_interface; //加入该组的套接字所属主机的IP地址
};

实现多播 Sender 和 Receiver:

        多播中用「发送者」(以下称为 Sender) 和「接收者」(以下称为 Receiver)替代服务器端和客户端。顾名思义,此处的 Sender 是多播数据的发送主体,Receiver 是需要多播组加入过程的数据接收主体。下面是示例,示例的运行场景如下:

  • Sender : 向 AAA 组广播(Broadcasting)文件中保存的新闻信息
  • Receiver : 接收传递到 AAA 组的新闻信息。

下面是示例代码:

news_sender:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define TTL 64
#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int send_sock;
    struct sockaddr_in mul_adr;
    int time_live = TTL;
    FILE *fp;
    char buf[BUF_SIZE];
    if (argc != 3)
    {
        printf("Usage : %s <GroupIP> <PORT>\n", argv[0]);
        exit(1);
    }
    send_sock = socket(PF_INET, SOCK_DGRAM, 0); //创建  UDP 套接字
    memset(&mul_adr, 0, sizeof(mul_adr));
    mul_adr.sin_family = AF_INET;
    mul_adr.sin_addr.s_addr = inet_addr(argv[1]); //必须将IP地址设置为多播地址
    mul_adr.sin_port = htons(atoi(argv[2]));
    //指定套接字中 TTL 的信息
    setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_TTL, (void *)&time_live, sizeof(time_live));
    if ((fp = fopen("news.txt", "r")) == NULL)
        error_handling("fopen() error");

    while (!feof(fp)) //如果文件没结束就返回0
    {
        fgets(buf, BUF_SIZE, fp);
        sendto(send_sock, buf, strlen(buf), 0, (struct sockaddr *)&mul_adr, sizeof(mul_adr));
        sleep(2);
    }
    fclose(fp);
    close(send_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

news_receiver:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int recv_sock;
    int str_len;
    char buf[BUF_SIZE];
    struct sockaddr_in adr;
    struct ip_mreq join_adr;
    if (argc != 3)
    {
        printf("Usage : %s <GroupIP> <PORT>\n", argv[0]);
        exit(1);
    }
    recv_sock = socket(PF_INET, SOCK_DGRAM, 0);
    memset(&adr, 0, sizeof(adr));
    adr.sin_family = AF_INET;
    adr.sin_addr.s_addr = htonl(INADDR_ANY);
    adr.sin_port = htons(atoi(argv[2]));

    if (bind(recv_sock, (struct sockaddr *)&adr, sizeof(adr)) == -1)
        error_handling("bind() error");
    //初始化结构体
    join_adr.imr_multiaddr.s_addr = inet_addr(argv[1]); //多播组地址
    join_adr.imr_interface.s_addr = htonl(INADDR_ANY);  //待加入的IP地址
    //利用套接字选项 IP_ADD_MEMBERSHIP 加入多播组,完成了接受指定的多播组数据的所有准备
    setsockopt(recv_sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, (void *)&join_adr, sizeof(join_adr));

    while (1)
    {
        //通过 recvfrom 函数接受多播数据。如果不需要知道传输数据的主机地址信息,可以向recvfrom函数的第5 6参数分别传入 NULL 0
        str_len = recvfrom(recv_sock, buf, BUF_SIZE - 1, 0, NULL, 0);
        if (str_len < 0)
            break;
        buf[str_len] = 0;
        fputs(buf, stdout);
    }
    close(recv_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

运行结果:

         通过结果可以看出,使用 sender 多播信息,通过 receiver 接收广播,如果延迟运行 receiver 将无法接受之前发送的信息。

14.2 广播

        广播(Broadcast)在「一次性向多个主机发送数据」这一点上与多播类似,但传输数据的范围有区别。多播即使在跨越不同网络的情况下,只要加入多播组就能接受数据。相反,广播只能向同一网络中的主机传输数据

广播的理解和实现方法:

        广播是向同一网络中的所有主机传输数据的方法。与多播相同,广播也是通过 UDP 来完成的。根据传输数据时使用的IP地址形式,广播分为以下两种:

  • 直接广播(Directed Broadcast)
  • 本地广播(Local Broadcast)

        二者在实现上的差别主要在于IP地址。直接广播的IP地址中除了网络地址外,其余主机地址全部设置成 1。例如,希望向网络地址 192.12.34 中的所有主机传输数据时,可以向 192.12.34.255 传输。换言之,可以采取直接广播的方式向特定区域内所有主机传输数据。

        反之,本地广播中使用的IP地址限定为 255.255.255.255 。例如,192.32.24 网络中的主机向 255.255.255.255 传输数据时,数据将传输到 192.32.24 网络中所有主机。

        数据通信中使用的IP地址是与 UDP 示例的唯一区别。默认生成的套接字会阻止广播,因此,只需通过如下代码更改默认设置:

int send_sock;
int bcast;
...
send_sock=socket(PF_INET,SOCK_DGRAM,0);
...
setsockopt(send_sock,SOL_SOCKET,SO_BROADCAST,(void*)&bcast,sizeof(bcast));
...

实现广播数据的 Sender 和 Receiver:

        下面是广播数据的 Sender 代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int send_sock;
    struct sockaddr_in broad_adr;
    FILE *fp;
    char buf[BUF_SIZE];
    int so_brd = 1;
    if (argc != 3)
    {
        printf("Usage : %s <GroupIP> <PORT>\n", argv[0]);
        exit(1);
    }
    send_sock = socket(PF_INET, SOCK_DGRAM, 0); //创建  UDP 套接字
    memset(&broad_adr, 0, sizeof(broad_adr));
    broad_adr.sin_family = AF_INET;
    broad_adr.sin_addr.s_addr = inet_addr(argv[1]);
    broad_adr.sin_port = htons(atoi(argv[2]));
    setsockopt(send_sock, SOL_SOCKET, SO_BROADCAST, (void *)&so_brd, sizeof(so_brd));
    if ((fp = fopen("news.txt", "r")) == NULL)
        error_handling("fopen() error");

    while (!feof(fp)) //如果文件没结束就返回0
    {
        fgets(buf, BUF_SIZE, fp);
        sendto(send_sock, buf, strlen(buf), 0, (struct sockaddr *)&broad_adr, sizeof(broad_adr));
        sleep(2);
    }
    fclose(fp);
    close(send_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

ps: 

  • sendto() 函数用于在无连接的数据报套接字(如UDP套接字)中发送数据,它不会进行连接的建立和断开操作,因此每次发送数据时都需要指定目标地址。这使得UDP套接字适用于一对多或多对多的通信场景,例如广播和组播。 
  • while (!feof(fp)) 循环读取文件,直到文件结束。feof() 函数用于检查是否已到达文件末尾。

下面是Receiver代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int recv_sock;                      // 接收数据的套接字
    int str_len;                        // 接收到的数据长度
    char buf[BUF_SIZE];                 // 存放接收到的数据的缓冲区
    struct sockaddr_in adr;             // 地址结构体,用于存储服务器绑定的地址信息
    
    // 检查命令行参数,确保指定了端口号
    if (argc != 2)
    {
        printf("Usage : %s <PORT>\n", argv[0]);
        exit(1);
    }
    
    // 创建一个UDP套接字
    recv_sock = socket(PF_INET, SOCK_DGRAM, 0);
    
    // 初始化地址结构体,绑定服务器的IP地址和端口号
    memset(&adr, 0, sizeof(adr));
    adr.sin_family = AF_INET;                   // 使用IPv4地址族
    adr.sin_addr.s_addr = htonl(INADDR_ANY);     // INADDR_ANY表示接受任意IP地址发送的数据
    adr.sin_port = htons(atoi(argv[1]));        // 从命令行参数获取端口号,并转换为网络字节序
    
    // 绑定套接字和地址信息
    if (bind(recv_sock, (struct sockaddr *)&adr, sizeof(adr)) == -1)
        error_handling("bind() error");
    
    while (1)
    {
        // 通过recvfrom函数接收数据。如果不需要知道传输数据的主机地址信息,可以向recvfrom函数的第5、6参数传入NULL和0
        str_len = recvfrom(recv_sock, buf, BUF_SIZE - 1, 0, NULL, 0);
        if (str_len < 0)
            break;
        
        buf[str_len] = 0;  // 添加字符串结束符,确保打印输出时不会超出接收到的数据
        fputs(buf, stdout); // 将接收到的数据打印到标准输出
    }
    
    // 关闭套接字
    close(recv_sock);
    return 0;
}

// 错误处理函数,用于输出错误信息并退出程序
void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

运行结果:


习题 :

1、TTL 的含义是什么?请从路由器的角度说明较大的 TTL 值与较小的 TTL 值之间的区别及问题。

        TTL 是决定「数据包传递距离」的主要因素。TTL 每经过一个路由器就减一。TTL 变为 0 时,数据包就无法再被传递,只能销毁。因此,TTL设置过大会影响网络流量。当然,设置过小无法传递到目标。

2、多播与广播的异同点是什么?请从数据通信的角度进行说明

        在「一次性向多个主机发送数据」这一点上与多播类似,但传输的数据范围有区别。多播即使在跨越不同网络的情况下,只要加入多播组就能接受数据。相反,广播只能向同一网络中的主机传输数据。

3、多播也对网络流量有利,请比较 TCP 交换方式解释其原因。

        TCP 是必须建立一对一的连接,如果要向1000个主机发送文件,就得传递1000次。但是此时用多播方式传输数据,就只需要发送一次。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/817530.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【奥比中光Gemini 2L快速上门】

奥比中光Gemini 2L快速上手 目录 奥比中光Gemini 2L快速上手[TOC](目录) 一、下载配置环境1.1 官网下载SDK1.2 配置环境 二、测试2.1 在bin中运行示例2.2 配置cmake 三、CMAKE3.1 CmakeLists.txt中各设置的意义 一、下载配置环境 1.1 官网下载SDK 进入官网&#xff0c;下载名…

maven的下载安装与配置环境变量!!!(全网最详细)

1.maven 官方网站&#xff0c;http://maven.apache.org 2.去官网下载。 3.选择你自己的解压路径&#xff08;D:\maven【我的挤压路径】&#xff09; 4.配置jdk环境变量&#xff08;不会的小伙伴可以看我以前的博客&#xff09; jdk 1.8 安装配置环境变量_明天更新的博客-CSD…

详细介绍Webpack5中的Plugin

Plugin的作用 插件Plugin可以扩展webpack&#xff0c;加入自定义的构建行为&#xff0c;使 webpack 可以执行更广泛的任务&#xff0c;拥有更强的构建能力。 Plugin的工作原理 webpack就像一条生产线&#xff0c;要经过一系列处理流程后才能将源文件转换成输出结果。 这条生…

Linux系统下MySQL读写分离

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 一、基于Amoeba读写分离 1.基于程序代码内部实现 2.基于中间代理层实现 三、操作步骤 1.在主机Amoeba上安装java环境 2.安装并配置Amoeba 3.配置Amoeba读写分离…

matlab RRR机械臂 简略代码

RRR机器人&#xff01;启动&#xff01; gazebo在arm mac上似乎难以运行&#xff0c;退而选择Matlab&#xff0c;完成老师第一个作业&#xff0c;现学现卖&#xff0c;权当记录作业过程&#xff0c;有不足之处&#xff0c;多多指教。 作业&#xff01;启动&#xff01; RRR机…

WAF绕过-信息收集篇

WAF绕过主要集中在信息收集&#xff0c;漏洞发现&#xff0c;漏洞利用&#xff0c;权限控制四个阶段。 1、什么是WAF&#xff1f; Web Application Firewall&#xff08;web应用防火墙&#xff09;&#xff0c;一种公认的说法是“web应用防火墙通过执行一系列针对HTTP/HTTPS的安…

有效的随机圆检测

文章目录 0、 摘要&#xff1a;一、 Base Idea二、 Determining Possible Circle2.1 判别条件2.2 圆的判别 三、Determining True Circles四、The Proposed RCD五、改进六、参考在这里插入图片描述 有效的随机圆检测 0、 摘要&#xff1a; 参考的文章提出了一种有效的不基于霍…

一文教你搭建工程化开发环境!

搭建工程化开发环境 下载 Node.js 官方下载地址 https://nodejs.org/zh-cn/download/releases node.js 版本迭代的非常快&#xff0c;目前官方已经推出到 v19.2.0 版本了&#xff0c;相对是一个比较新的版本了。建议下载 v14.18.3 版本&#xff0c;至少这个版本目前在很多项…

【kubernetes系列】flannel之vxlan模式分析

概述 在Kubernetes中要保证容器之间网络互通&#xff0c;网络至关重要。而Kubernetes本身并没有自己实现容器网络&#xff0c;而是而是借助CNI标准&#xff0c;通过插件化的方式自由接入进来。在容器网络接入进来需要满足如下基本原则&#xff1a; Pod无论运行在任何节点都可…

有趣的Python之基本语法(一篇足够)

目录 Python简介 基本数据类型 进入交互模式 input()函数 条件语句 逻辑运算符 列表list 元组 字典 循环语句 format()方法和f 定义函数 python中的标准库引入 引入第三方库模块 面向对象 读文件 写文件 异常处理 Python简介 面向对象编程、函数式编程和过程…

二 动手学深度学习v2笔记 —— 线性回归 + 基础优化算法

二 动手学深度学习v2 —— 线性回归 基础优化算法 目录: 线性回归基础优化方法 1. 线性回归 总结 线性回归是对n维输入的加权&#xff0c;外加偏差使用平方损失来衡量预测值和真实值的差异线性回归有显示解线性回归可以看作是单层神经网络 2. 基础优化方法 梯度下降 小批量…

4通道高速数据采集卡推荐哪些呢

FMC141是一款基于VITA57.4标准的4通道2.8GSPS/2.5GSPS/1.6GSPS采样率16位DA播放FMC子卡&#xff0c;该板卡为FMC标准&#xff0c;符合VITA57.4与VITA57.1规范&#xff0c;16通道的JESD204B接口通过FMC连接器连接至FPGA的高速串行端口。 该板卡采用TI公司的DAC39J84芯片&#x…

【玩转Linux】Linux输入子系统简介

(꒪ꇴ꒪ ),hello我是祐言博客主页&#xff1a;C语言基础,Linux基础,软件配置领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff01;送给读者的一句鸡汤&#x1f914;&#xff1a;集中起来的意志可以击穿顽石!作者水平很有限&#xff0c;如果发现错误&#x…

LeetCode每日一题Day1——买卖股票的最佳时机

✨博主&#xff1a;命运之光 &#x1f984;专栏&#xff1a;算法修炼之练气篇&#xff08;C\C版&#xff09; &#x1f353;专栏&#xff1a;算法修炼之筑基篇&#xff08;C\C版&#xff09; &#x1f433;专栏&#xff1a;算法修炼之练气篇&#xff08;Python版&#xff09; ✨…

青大数据结构【2016】

一、单选 二、简答 3.简述遍历二叉树的含义及常见的方法。

shiro550反序列化漏洞原理与漏洞复现(基于vulhub,保姆级的详细教程)

漏洞原理 本文所有使用的脚本和工具都会在文末给出链接&#xff0c;希望读者可以耐心看到最后。 啥是shiro? Shiro是Apache的一个强大且易用的Java安全框架,用于执行身份验证、授权、密码和会话管理。使用 Shiro 易于理解的 API&#xff0c;可以快速轻松地对应用程序进行保…

代码随想录算法训练营之JAVA|第十七天| 654. 最大二叉树

今天是第17天刷leetcode&#xff0c;立个flag&#xff0c;打卡60天。 算法挑战链接 654. 最大二叉树https://leetcode.cn/problems/maximum-binary-tree/description/ 第一想法 错误的想法&#xff0c;就不说了。 看完代码随想录之后的想法 用递归模拟真实的过程 如果我…

【iOS】通知原理

我们可以通过看通知的实现机制来了解通知中心是怎么实现对观察者的引用的。由于苹果对Foundation源码是不开源的&#xff0c;我们具体就参考一下GNUStep的源码实现。GNUStep的源码地址为&#xff1a;GNUStep源码GitHub下载地址, 具体源码可以进行查看。 通知的主要流程 通知全…

AD21 PCB设计的高级应用(二)PCB常见走线等长设计

&#xff08;二&#xff09;PCB常见走线等长设计 1.蛇形线的等长设计2.DDR的等长分组3.等长的拓扑结构3.1 点对点连接3.2 T型拓扑结构3.3 菊花链拓扑结构 1.蛇形线的等长设计 在 PCB 设计中,网络等长调节目的就是为了尽可能地降低信号在 PCB上传输延迟的差异。在 Altium Desig…

C语言第十三课--------初阶指针的认识--------重要部分

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; &#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382;…