ARTS Activity -- Using Java

news2025/1/19 10:39:12

About ARTS - Complete one ARTS per week:
● Algorithm: Do at least one LeetCode algorithm per week
Review: Read and comment on at least one technical article in English
● Tips: Learn at least one technical trick
● Share: Share a technical article with opinions and thoughts

It is hoped that this event will gather a wave of people who love technology and continue the spirit of curiosity, exploration, practice and sharing.

---------------------------------------------------------------------------------------------------------------------------------

1. First, the content of learning

142. 环形链表 II - 力扣(LeetCode)

        Given the head node of a linked list, return the first node from which the linked list began entering the ring. If the list is loopless, null is returned.

        If there is a node in the linked list that can be reached again by continuously tracking the next pointer, then there is a ring in the linked list.To represent a ring in a given list, the evaluation system internally uses the integer pos to indicate the position in the list where the end of the list is connected (the index starts at 0). If pos is -1, then there are no rings in the list. Note: pos is not passed as a parameter, only to identify the actual condition of the linked list.

        The linked list cannot be modified.

 

Read and comment on at least one technical article in English:

Joint global metric learning and local manifold preservation for scene recognition

 

Share a technical article with opinions and thoughts:

Joint global metric learning and local manifold preservation for scene recognition

        With the rapid development of deep learning, a large number of scene recognition approaches have been proposed by exploring the deep features extracted from convolutional layers or fully connected layers. Liu et al.  employed deep convolutional features to construct a mid-level dictionary based on sparse coding and a discriminative regularization. Khan et al.  transformed the structured convolutional activations into a more discriminative feature space. Wang et al.  proposed a multi-resolution CNN architecture aiming to capture visual content and structure from multiple levels. Tang et al.  used the GoogleNet model to make a deeper investigation of multi-stage CNN features, where both the top layer features and lower layer features are employed for scene representations. Different from the above methods, in this paper, we propose a joint learning framework by taking advantage of both global metric learning and local manifold preservation, aiming to explore more informative deep features for scene recognition

2. Difficulties encountered and solutions

        Convergence study In order to demonstrate the efficiency of JGML-LMP, we also investigate the recognition accuracies in terms of the number of iterations for the four scene datasets. Fig. 13 (a)–(d) shows the recognition accuracies of JGML-LMP with 10 iterations. We can observe that JGML-LMP reaches convergence within less than five iterations for the four datasets. This may be attributed to an appropriate initialization of W in Algorithm1. Although scene images show large variations in spatial position, illumination, and scale, the proposed joint learning framework is efficient for scene recognition.

 

3. Three, learning to punch the results display

public class Solution {
    public ListNode detectCycle(ListNode head) {

        ListNode pos = head;
        Set<ListNode> visited = new HashSet<ListNode>();
        while(pos != null) {
            if (visited.contains(pos)) {
                return pos;
            } else {
                visited.add(pos);
            }
            pos = pos.next;
        }
        return null;
    }
}

One is to use a hash table:

        Traverse each node in the linked list and record it; Once a node that has been traversed before is encountered, it can be determined that there is a ring in the linked list. This can be easily achieved with the help of hash tables.

public class Solution {
    public ListNode detectCycle(ListNode head) {
        if (head == null) {
            return null;
        }
        ListNode slow = head, fast = head;
        while (fast != null) {
            slow = slow.next;
            if (fast.next != null) {
                fast = fast.next.next;
            } else {
                return null;
            }
            if (fast == slow) {
                ListNode ptr = head;
                while (ptr != slow) {
                    ptr = ptr.next;
                    slow = slow.next;
                }
                return ptr;
            }
        }
        return null;
    }
}

The other is the speed indicator:

        We use two Pointers, fast and slow. They all start at the head of the list. Subsequently, the slow pointer moves back one position at a time, while the fast pointer moves back two positions. If there is a ring in the linked list, the fast pointer will eventually meet the slow pointer again in the ring.

4. Summary of learning skills

        In this paper, I have proposed a joint global metric learning and local manifold preservation method for scene recognition. By generating cluster centers for each specific class, I have formulated a new global metric learning problem, which not only helps to sufficiently capture the global discriminative information from training images, but also guarantees a lower computational cost. By introducing an adaptive nearest neighbors constraint, we have learned the local neighborships in a more appropriate metric space instead of the Euclidean space, which allows to preserve the local manifold information as much as possible. By taking full advantage of both global and local information, our method has great potential to produce more discriminative and robust feature presentations, thus achieving a promising performance for scene recognition. Extensive experiments on four benchmark scene datasets have demonstrated the superiority of the proposed method over stateof-the-art methods.

        Although our joint learning model has performed well on the four scene datasets, there remain some shortcomings that need to be further improved. In the local manifold preservation part, we find adaptive nearest neighbors in the new metric space. However, in the global metric learning part, the cluster centers are still pre-calculated in the Euclidean space. This may be the most critical problem in metric learning, which should be taken into account in future work. Since the proposed method is not suited for large-scale scene datasets, we also intend to explore deep metric learning to further improve the recognition performance for such datasets

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/813736.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1.2 eureka注册中心,完成服务注册

目录 环境搭建 搭建eureka服务 导入eureka服务端依赖 编写启动类&#xff0c;添加EnableEurekaServer注解 编写eureka配置文件 启动服务,访问eureka Euraka服务注册 创建了两个子模块 在模块里导入rureka客户端依赖 编写eureka配置文件 添加Services 环境搭建 创建父…

08-向量的范数_范数与正则项的关系

⛳向量的范数 范数的公式是向量每个分量 绝对值 P 次方 再用幂函数计算 P 分之一&#xff0c;这里 P 肯定是整数 1&#xff0c;2&#xff0c;3…到正无穷都是可以的 向量的范数就是把向量变成一个标量&#xff0c;范数的表示就是两个竖线来表示&#xff0c;然后右下角写上 P&a…

LeetCode36.Valid-Sudoku<有效的数独>

题目&#xff1a; 思路&#xff1a; 这题并不难&#xff0c;它类似于N皇后问题。在N皇后问题中&#xff0c;行&#xff0c;列&#xff0c;对角线&#xff0c;写对角线&#xff0c;都不能出现连续的皇后。 本题类似&#xff0c;不过他是行&#xff0c;列&#xff0c;还有一个B…

【数据结构篇C++实现】- 图

友情链接&#xff1a;C/C系列系统学习目录 文章目录 &#x1f680;一、图的基本概念和术语1、有向图和无向图3、基本图和多重图4、完全图5、子图6、连通、连通图和连通分量7、强连通图、强连通分量8、生成树、生成森林9、顶点的度、入度和出度10、边的权和网11、稠密图、稀疏图…

【点云处理教程】00计算机视觉的Open3D简介

一、说明 Open3D 是一个开源库&#xff0c;使开发人员能够处理 3D 数据。它提供了一组用于 3D 数据处理、可视化和机器学习任务的工具。该库支持各种数据格式&#xff0c;例如 .ply、.obj、.stl 和 .xyz&#xff0c;并允许用户创建自定义数据结构并在程序中访问它们。 Open3D 广…

介绍壹牛NFT数字艺术藏品数藏源码

这个版本新增了不少功能&#xff0c;也修复了一些地方。 1.平台新增用户找回密码功能 2.平台新增短信注册&#xff08;实名制功能&#xff09; 3.平台新增主图后台添加功能 4.平台修复相关问题&#xff0c;系统高效运行 5、H5端与APP端在新UI完美适配 6、加入宝盒功能&…

04-导数判断凹(concave)凸(convex)性_导数用于泰勒展开

导数与函数凹凸性的关系 函数的二阶导数是和函数的凹凸性是有关系的&#xff0c;凹凸性怎么定义的&#xff1f; 先来做简单的回顾&#xff0c;更多的会在最优化方法里面给大家讲&#xff0c;这里先记住凸函数是向下凸的&#xff0c; 反正就是凹的&#xff0c;是否是凸函数可以…

Linux——平台设备及其驱动

目录 前言 一、平台设备 二、平台驱动 三、平台驱动简单实例 四、 电源管理 五、udev 和驱动的自动加载 六、使用平台设备的LED 驱动 七、自动创建设备节点 前言 要满足 Linux 设备模型&#xff0c;就必须有总线、设备和驱动。但是有的设备并没有对应的物理总线&#x…

【双评价笔记】农业指向之水资源评价

农业指向水资源单项评价是基于区域内及邻近地区气象站点长时间序列降水观测资料,通过空间插值得到多年平均降水量分布图层,降水量按照200,400,800,1200这个间断点分为好(很湿润),较好(湿润),一般(半湿润),较差(半干旱),差(干旱)5 个等级。 本次实验过程采用的评价分…

谷粒商城第七天-商品服务之分类管理下的分类的拖拽功能的实现

目录 一、总述 1.1 前端思路 1.2 后端思路 二、前端实现 2.1 判断是否能进行拖拽 2.2 收集受影响的节点&#xff0c;提交给服务器 三、后端实现 四、总结 一、总述 这个拖拽功能对于这种树形的列表&#xff0c;整体的搬迁是很方便的。但是其实现却并不是那么的简单。 …

CMU15-213 课程笔记 01-课程概览

知识点 这门课的目的&#xff1a;深入理解当你执行代码时&#xff0c;计算机在做什么 LLDB&#xff1a;基于 LLVM 的命令行调试器&#xff0c;类似 GBD 内存引用 Bug typedef struct {int a[2];double d; } struct_t;double fun(int i) {volatile struct_t s;s.d 3.14;s.a…

Flowable-服务-邮件任务

目录 定义图形标记XML内容邮件服务器配置界面操作 定义 Flowable 支持通过自动的邮件服务任务&#xff08;Email Task&#xff09;增强业务流程&#xff0c;它可以向一个或多个收信人发送 邮件&#xff0c;支持 cc&#xff0c;bcc&#xff0c;HTML 内容等。 流程流转到邮件任务…

xshell连接liunx服务器身份验证不能选择password

ssh用户身份验证不能选择password 只能用public key的解决办法 问题现象 使用密码通过Workbench或SSH方式(例如PuTTY、Xshell、SecureCRT等)远程登录ECS实例时&#xff0c;遇到服务器禁用了密码登录方式错误. 可能原因 该问题是由于SSH服务对应配置文件/etc/ssh/sshd_config中…

【软件安装】MATLAB_R2021b for mac 安装

Mac matlab_r2021b 安装 下载链接&#xff1a;百度网盘 下载链接中所有文件备用。 我所使用的电脑配置&#xff1a; Macbook Pro M1 Pro 16512 系统 macOS 13.5 安装步骤 前置准备 无此选项者&#xff0c;自行百度 “mac 任何来源”。 1 下载好「MATLAB R2021b」安装文…

stm32 舵机 cubemx

文章目录 前言一、cubemx配置二、代码1.serve.c2.serve.h3.主函数 总结 前言 stm32对舵机进行控制&#xff0c;很简单直接一个pwm就可以实现 pwm的周期是50HZ占空比分别对应 一个0.5ms的高电平对应于0度 一个1.5ms的高电平对应于90度 一个2.5ms的高电平对应于180度 因此&#…

【C语言】扫雷(保姆级教程+内含源码)

C系列文章目录 前言 一&#xff0c;模块化编程 二&#xff0c;游戏思路与逻辑 三&#xff0c;实现游戏步骤/过程 1&#xff0c;菜单界面(menu) 2&#xff0c;实现多行多列扫雷 3&#xff0c; 实现多个雷 4,棋盘初始化 5&#xff0c;棋盘的打印 6&#xff0c;布置雷…

连接器信号完整性仿真教程 六

连接器信号完整性仿真教程五中,讲了波导端口中同轴波导端口及多Pin波导端口的设置。本将继续以实例演示的方式讲解波导端口中的微带(Microstrip Line)波导端口的设置及其在连接器信号完整性仿真中的应用。 一 微带线(Microstrip Line) 由介基材(Dielectric Substrate)及…

正则表达式速通

简介 正则表达式&#xff0c;我们可以看作通配符的增强版&#xff0c;可以帮我们匹配指定规则的字符串&#xff0c;在计算机中应用广泛&#xff0c;比如说爬虫、网站的登录表单等。 原视频&#xff1a;https://www.bilibili.com/video/BV1da4y1p7iZ 学习正则表达式的常用工具…

【LeetCode每日一题】——566.重塑矩阵

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 矩阵 二【题目难度】 简单 三【题目编号】 566.重塑矩阵 四【题目描述】 在 MATLAB 中&…

【C++ 程序设计】实战:C++ 实践练习题(1~10)

目录 01. 二维数组 02. 奇偶性 03. 指针与变量 04. 员工薪资 05. 整型值&#xff08;%4d 进行格式化&#xff09; 06. 求三个数中的最大值和最小值 07. 同一字母次数统计 08. 字符串回文判断 09. 闰年判断 10. 交换两个双精度数 01. 二维数组 #include <stdio.…