pytorch(续周报(1))

news2025/1/19 13:02:06

文章目录

  • 2.1 张量
    • 2.1.1 简介
    • 2.1.2 创建tensor
    • 2.1.3 张量的操作
    • 2.1.4 广播机制
  • 2.2 自动求导
    • Autograd简介
    • 2.2.1 梯度
  • 2.3 并行计算简介
    • 2.3.1 为什么要做并行计算
    • 2.3.2 为什么需要CUDA
    • 2.3.3 常见的并行的方法:
      • 网络结构分布到不同的设备中(Network partitioning)
      • 同一层的任务分布到不同数据中(Layer-wise partitioning)
      • 不同的数据分布到不同的设备中,执行相同的任务(Data parallelism)
    • 2.3.4 使用CUDA加速训练

2.1 张量

概述:

  • 张量的简介
  • PyTorch如何创建张量
  • PyTorch中张量的操作
  • PyTorch中张量的广播机制

2.1.1 简介

几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量,矩阵就是二阶张量。

张量维度代表含义
0维张量代表的是标量(数字)
1维张量代表的是向量
2维张量代表的是矩阵
3维张量时间序列数据 股价 文本数据 单张彩色图片(RGB)

张量是现代机器学习的基础。它的核心是一个数据容器,多数情况下,它包含数字,有时候它也包含字符串,但这种情况比较少。因此可以把它想象成一个数字的水桶。

这里有一些存储在各种类型张量的公用数据集类型:

  • 3维 = 时间序列
  • 4维 = 图像
  • 5维 = 视频

例子:一个图像可以用三个字段表示:

(width, height, channel) = 3D

但是,在机器学习工作中,我们经常要处理不止一张图片或一篇文档——我们要处理一个集合。我们可能有10,000张郁金香的图片,这意味着,我们将用到4D张量:

(batch_size, width, height, channel) = 4D

2.1.2 创建tensor

  1. 随机初始化矩阵
    我们可以通过torch.rand()的方法,构造一个随机初始化的矩阵:

import torch
x = torch.rand(4, 3) 
print(x)
tensor([[0.7569, 0.4281, 0.4722],
        [0.9513, 0.5168, 0.1659],
        [0.4493, 0.2846, 0.4363],
        [0.5043, 0.9637, 0.1469]])
  1. 全0矩阵的构建
    我们可以通过torch.zeros()构造一个矩阵全为 0,并且通过dtype设置数据类型为 long。除此以外,我们还可以通过torch.zero_()和torch.zeros_like()将现有矩阵转换为全0矩阵.
import torch
x = torch.zeros(4, 3, dtype=torch.long)
print(x)
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])
  1. 张量的构建
    我们可以通过torch.tensor()直接使用数据,构造一个张量:
import torch
x = torch.tensor([5.5, 3]) 
print(x)
tensor([5.5000, 3.0000])
  1. 基于已经存在的 tensor,创建一个 tensor :
x = x.new_ones(4, 3, dtype=torch.double) 
# 创建一个新的全1矩阵tensor,返回的tensor默认具有相同的torch.dtype和torch.device
# 也可以像之前的写法 x = torch.ones(4, 3, dtype=torch.double)
print(x)
x = torch.randn_like(x, dtype=torch.float)
# 重置数据类型
print(x)
# 结果会有一样的size
# 获取它的维度信息
print(x.size())
print(x.shape)
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
tensor([[ 2.7311, -0.0720,  0.2497],
        [-2.3141,  0.0666, -0.5934],
        [ 1.5253,  1.0336,  1.3859],
        [ 1.3806, -0.6965, -1.2255]])
torch.Size([4, 3])
torch.Size([4, 3])

返回的torch.Size其实是一个tuple,⽀持所有tuple的操作。我们可以使用索引操作取得张量的长、宽等数据维度。

  1. 常见的构造Tensor的方法:
函数功能
Tensor(sizes)基础构造函数
tensor(data)类似于np.array
ones(sizes)全1
zeros(sizes)全0
eye(sizes)对角为1,其余为0
arange(s,e,step)从s到e,步长为step
linspace(s,e,steps)从s到e,均匀分成step份
rand/randn(sizes)rand是[0,1)均匀分布;randn是服从N(0,1)的正态分布
normal(mean,std)正态分布(均值为mean,标准差是std)
randperm(m)随机排列

2.1.3 张量的操作

在接下来的内容中,我们将介绍几种常见的张量的操作方法:

  1. 加法操作:
import torch
# 方式1
y = torch.rand(4, 3) 
print(x + y)

# 方式2
print(torch.add(x, y))

# 方式3 in-place,原值修改
y.add_(x) 
print(y)
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])

  1. 索引操作:(类似于numpy)

需要注意的是:索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。如果不想修改,可以考虑使用copy()等方法

import torch
x = torch.rand(4,3)
# 取第二列
print(x[:, 1]) 
tensor([-0.0720,  0.0666,  1.0336, -0.6965])
y = x[0,:]
y += 1
print(y)
print(x[0, :]) # 源tensor也被改了了
tensor([3.7311, 0.9280, 1.2497])
tensor([3.7311, 0.9280, 1.2497])
  1. 维度变换
    张量的维度变换常见的方法有torch.view()torch.reshape(),下面我们将介绍torch.view()
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # -1是指这一维的维数由其他维度决定
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

注: torch.view() 返回的新tensor与源tensor共享内存(其实是同一个tensor),更改其中的一个,另外一个也会跟着改变。(顾名思义,view()仅仅是改变了对这个张量的观察角度)

x += 1
print(x)
print(y) # 也加了了1
tensor([[ 1.3019,  0.3762,  1.2397,  1.3998],
        [ 0.6891,  1.3651,  1.1891, -0.6744],
        [ 0.3490,  1.8377,  1.6456,  0.8403],
        [-0.8259,  2.5454,  1.2474,  0.7884]])
tensor([ 1.3019,  0.3762,  1.2397,  1.3998,  0.6891,  1.3651,  1.1891, -0.6744,
         0.3490,  1.8377,  1.6456,  0.8403, -0.8259,  2.5454,  1.2474,  0.7884])
  1. 取值操作
    如果我们有一个元素 tensor ,我们可以使用 .item() 来获得这个 value,而不获得其他性质:
import torch
x = torch.randn(1) 
print(type(x)) 
print(type(x.item()))
<class 'torch.Tensor'>
<class 'float'>

PyTorch中的 Tensor 支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,具体使用方法可参考官方文档。

2.1.4 广播机制

当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。

x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x + y)
tensor([[1, 2]])
tensor([[1],
        [2],
        [3]])
tensor([[2, 3],
        [3, 4],
        [4, 5]])

由于x和y分别是1行2列和3行1列的矩阵,如果要计算x+y,那么x中第一行的2个元素被广播 (复制)到了第二行和第三行,⽽y中第⼀列的3个元素被广播(复制)到了第二列。如此,就可以对2个3行2列的矩阵按元素相加。

2.2 自动求导

PyTorch 中,所有神经网络的核心是 autograd 包。autograd包为张量上的所有操作提供了自动求导机制。它是一个在运行时定义 ( define-by-run )的框架,这意味着反向传播是根据代码如何运行来决定的,并且每次迭代可以是不同的。

  • autograd的求导机制
  • 梯度的反向传播

Autograd简介

torch.Tensor 是这个包的核心类。如果设置它的属性 .requires_gradTrue,那么它将会追踪对于该张量的所有操作。当完成计算后可以通过调用 .backward(),来自动计算所有的梯度。这个张量的所有梯度将会自动累加到.grad属性。

注意:在 y.backward() 时,如果 y 是标量,则不需要为 backward() 传入任何参数;否则,需要传入一个与 y 同形的Tensor。

要阻止一个张量被跟踪历史,可以调用.detach()方法将其与计算历史分离,并阻止它未来的计算记录被跟踪。为了防止跟踪历史记录(和使用内存),可以将代码块包装在 with torch.no_grad(): 中。在评估模型时特别有用,因为模型可能具有 requires_grad = True 的可训练的参数,但是我们不需要在此过程中对他们进行梯度计算。

还有一个类对于autograd的实现非常重要:FunctionTensor Function 互相连接生成了一个无环图 (acyclic graph),它编码了完整的计算历史。每个张量都有一个.grad_fn属性,该属性引用了创建 Tensor 自身的Function(除非这个张量是用户手动创建的,即这个张量的grad_fnNone )。

from __future__ import print_function
import torch
x = torch.randn(3,3,requires_grad=True)
print(x.grad_fn)
None

如果需要计算导数,可以在 Tensor 上调用 .backward()。如果 Tensor 是一个标量(即它包含一个元素的数据),则不需要为 backward() 指定任何参数,但是如果它有更多的元素,则需要指定一个gradient参数,该参数是形状匹配的张量。

创建一个张量并设置requires_grad=True用来追踪其计算历史

x = torch.ones(2, 2, requires_grad=True)
print(x)
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)

对这个张量做一次运算:

y = x**2
print(y)
tensor([[1., 1.],
        [1., 1.]], grad_fn=<PowBackward0>)

y是计算的结果,所以它有grad_fn属性。

print(y.grad_fn)
<PowBackward0 object at 0x000001CB45988C70>

对 y 进行更多操作

z = y * y * 3
out = z.mean()

print(z, out)
tensor([[3., 3.],
        [3., 3.]], grad_fn=<MulBackward0>) tensor(3., grad_fn=<MeanBackward0>)

.requires_grad_(...) 原地改变了现有张量的requires_grad标志。如果没有指定的话,默认输入的这个标志是 False

a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
False
True
<SumBackward0 object at 0x000001CB4A19FB50>

2.2.1 梯度

现在开始进行反向传播,因为 out 是一个标量,因此out.backward() out.backward(torch.tensor(1.)) 等价。

out.backward()

输出导数 d(out)/dx

print(x.grad)
tensor([[3., 3.],
        [3., 3.]])

数学上,若有向量函数 y ⃗ = f ( x ⃗ ) \vec{y}=f(\vec{x}) y =f(x ),那么 y ⃗ \vec{y} y 关于 x ⃗ \vec{x} x 的梯度就是一个雅可比矩阵:
J = ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) J=\left(\begin{array}{ccc}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right) J= x1y1x1ymxny1xnym
torch.autograd 这个包就是用来计算一些雅可比矩阵的乘积的。例如,如果 v v v 是一个标量函数 l = g ( y ⃗ ) l = g(\vec{y}) l=g(y ) 的梯度:
v = ( ∂ l ∂ y 1 ⋯ ∂ l ∂ y m ) v=\left(\begin{array}{lll}\frac{\partial l}{\partial y_{1}} & \cdots & \frac{\partial l}{\partial y_{m}}\end{array}\right) v=(y1lyml)
由链式法则,我们可以得到:

v J = ( ∂ l ∂ y 1 ⋯ ∂ l ∂ y m ) ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) = ( ∂ l ∂ x 1 ⋯ ∂ l ∂ x n ) v J=\left(\begin{array}{lll}\frac{\partial l}{\partial y_{1}} & \cdots & \frac{\partial l}{\partial y_{m}}\end{array}\right)\left(\begin{array}{ccc}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right)=\left(\begin{array}{lll}\frac{\partial l}{\partial x_{1}} & \cdots & \frac{\partial l}{\partial x_{n}}\end{array}\right) vJ=(y1lyml) x1y1x1ymxny1xnym =(x1lxnl)

注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。

# 再来反向传播⼀一次,注意grad是累加的
out2 = x.sum()
out2.backward()
print(x.grad)

out3 = x.sum()
x.grad.data.zero_()
out3.backward()
print(x.grad)
tensor([[4., 4.],
        [4., 4.]])
tensor([[1., 1.],
        [1., 1.]])

现在我们来看一个雅可比向量积的例子:

x = torch.randn(3, requires_grad=True)
print(x)

y = x * 2
i = 0
while y.data.norm() < 1000:
    y = y * 2
    i = i + 1
print(y)
print(i)
tensor([-0.9332,  1.9616,  0.1739], requires_grad=True)
tensor([-477.7843, 1004.3264,   89.0424], grad_fn=<MulBackward0>)
8

在这种情况下,y 不再是标量。torch.autograd 不能直接计算完整的雅可比矩阵,但是如果我们只想要雅可比向量积,只需将这个向量作为参数传给 backward:

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)

print(x.grad)
tensor([5.1200e+01, 5.1200e+02, 5.1200e-02])

也可以通过将代码块包装在 with torch.no_grad(): 中,来阻止 autograd 跟踪设置了.requires_grad=True的张量的历史记录。

print(x.requires_grad)
print((x ** 2).requires_grad)

with torch.no_grad():
    print((x ** 2).requires_grad)
True
True
False

如果我们想要修改 tensor 的数值,但是又不希望被 autograd 记录(即不会影响反向传播), 那么我们可以对 tensor.data 进行操作。

x = torch.ones(1,requires_grad=True)

print(x.data) # 还是一个tensor
print(x.data.requires_grad) # 但是已经是独立于计算图之外

y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播

y.backward()
print(x) # 更改data的值也会影响tensor的值 
print(x.grad)
tensor([1.])
False
tensor([100.], requires_grad=True)
tensor([2.])

2.3 并行计算简介

在利用PyTorch做深度学习的过程中,可能会遇到数据量较大无法在单块GPU上完成,或者需要提升计算速度的场景,这时就需要用到并行计算。

  • 并行计算的简介
  • CUDA简介
  • 并行计算的三种实现方式
  • 使用CUDA加速训练

2.3.1 为什么要做并行计算

深度学习的发展离不开算力的发展,GPU的出现让我们的模型可以训练的更快,更好。所以,如何充分利用GPU的性能来提高我们模型学习的效果,这一技能是我们必须要学习的。这一节,我们主要讲的就是PyTorch的并行计算。PyTorch可以在编写完模型之后,让多个GPU来参与训练,减少训练时间。

2.3.2 为什么需要CUDA

CUDA是我们使用GPU的提供商——NVIDIA提供的GPU并行计算框架。对于GPU本身的编程,使用的是CUDA语言来实现的。但是,在我们使用PyTorch编写深度学习代码时,使用的CUDA又是另一个意思。在PyTorch使用 CUDA表示要开始要求我们的模型或者数据开始使用GPU了。

在编写程序中,当我们使用了 .cuda() 时,其功能是让我们的模型或者数据从CPU迁移到GPU(0)当中,通过GPU开始计算。

注:

  1. 我们使用GPU时使用的是.cuda()而不是使用.gpu()。这是因为当前GPU的编程接口采用CUDA,但是市面上的GPU并不是都支持CUDA,只有部分NVIDIA的GPU才支持,AMD的GPU编程接口采用的是OpenCL,在现阶段PyTorch并不支持。
  2. 数据在GPU和CPU之间进行传递时会比较耗时,我们应当尽量避免数据的切换。
  3. GPU运算很快,但是在使用简单的操作时,我们应该尽量使用CPU去完成。
  4. 当我们的服务器上有多个GPU,我们应该指明我们使用的GPU是哪一块,如果我们不设置的话,tensor.cuda()方法会默认将tensor保存到第一块GPU上,等价于tensor.cuda(0),这将会导致爆出out of memory的错误。我们可以通过以下两种方式继续设置。
    1.  #设置在文件最开始部分
      import os
      os.environ["CUDA_VISIBLE_DEVICE"] = "2" # 设置默认的显卡
      
    2.  CUDA_VISBLE_DEVICE=0,1 python train.py # 使用0,1两块GPU
      

2.3.3 常见的并行的方法:

网络结构分布到不同的设备中(Network partitioning)

在刚开始做模型并行的时候,这个方案使用的比较多。其中主要的思路是,将一个模型的各个部分拆分,然后将不同的部分放入到GPU来做不同任务的计算。其架构如下:

在这里插入图片描述

这里遇到的问题就是,不同模型组件在不同的GPU上时,GPU之间的传输就很重要,对于GPU之间的通信是一个考验。但是GPU的通信在这种密集任务中很难办到,所以这个方式慢慢淡出了视野。

同一层的任务分布到不同数据中(Layer-wise partitioning)

第二种方式就是,同一层的模型做一个拆分,让不同的GPU去训练同一层模型的部分任务。其架构如下:

在这里插入图片描述

这样可以保证在不同组件之间传输的问题,但是在我们需要大量的训练,同步任务加重的情况下,会出现和第一种方式一样的问题。

不同的数据分布到不同的设备中,执行相同的任务(Data parallelism)

第三种方式有点不一样,它的逻辑是,我不再拆分模型,我训练的时候模型都是一整个模型。但是我将输入的数据拆分。所谓的拆分数据就是,同一个模型在不同GPU中训练一部分数据,然后再分别计算一部分数据之后,只需要将输出的数据做一个汇总,然后再反传。其架构如下:

在这里插入图片描述

这种方式可以解决之前模式遇到的通讯问题。现在的主流方式是数据并行的方式(Data parallelism)

2.3.4 使用CUDA加速训练

在PyTorch框架下,CUDA的使用变得非常简单,我们只需要显式的将数据和模型通过.cuda()方法转移到GPU上就可加速我们的训练,在此处我们仅讨论单卡的情况下,后续我们会介绍多卡训练的使用方法。

model = Net()
model.cuda() # 模型显示转移到CUDA上

for image,label in dataloader:
    # 图像和标签显示转移到CUDA上
    image = image.cuda() 
    label = label.cuda()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/813668.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++入门篇2---类和对象(上)

看前须知:何为面向对象&#xff1f; 面向对象&#xff08;Object-oriented&#xff09;是一种计算机编程的方法论和编程范式。面向对象的核心思想是将数据&#xff08;对象&#xff09;和操作&#xff08;方法&#xff09;封装在一起&#xff0c;形成一个相互关联和相互作用的…

Diffusion mdoel: Denoising Diffusion Probabilistic Models论据解读及实现(一)

论文地址&#xff1a;https://arxiv.org/pdf/2006.11239.pdf 1 正向加噪推导 **核心公式1 ** x t α ˉ t ∗ x 0 1 − α ˉ t z t x_t\sqrt{\bar \alpha_t}*x_{0}\sqrt{1-\bar \alpha_t}z_t xt​αˉt​ ​∗x0​1−αˉt​ ​zt​ 证明如下&#xff1a; α t 1 − β…

芯片制造详解.刻蚀原理.学习笔记(五)

本篇笔记是看完原视频后的整理和补充&#xff0c;建议各位观看原视频&#xff0c;这里附上地址。 如何雕刻芯片&#xff1a;刻蚀原理&#xff5c;芯片制造详解05 芯片制造详解.刻蚀原理.学习笔记 五 一、刻蚀技术的分类二、刻蚀中三个关键指标2.1 刻蚀速率2.2 选择比2.3 方向性…

linux配置固定ip

为什么要固定ip&#xff1f; 虚拟机是利用DHCP&#xff08;动态获取ip&#xff09;&#xff0c;ip地址会频繁变化&#xff0c;不利于远程连接linux&#xff0c;同时会改变映射关系。 VMware 第一步&#xff1a;在workstation中配置IP地址网关和网段 1.点击虚拟网络编辑器 …

RISCV - 4 ISA 扩展名命名约定

RISCV - 4 ISA 扩展名命名约定 1 Case Sensitivity2 Base Integer ISA3 Instruction-Set Extension Names4 Version Numbers5 Underscores6 Additional Standard Extension Names7 Supervisor-level Instruction-Set Extensions8 Hypervisor-level Instruction-Set Extensions9…

28_计算机网络(Computer Networks)基础

本篇介绍计算机网络的基础知识。 文章目录 1. 计算机网络历史2. 以太网" (Ethernet)2.1 以太网" (Ethernet)的简单形式及概念2.2 指数退避解决冲突问题2.3 利用交换机减少同一载体中设备2.4 互联网&#xff08;The Internet&#xff09;2.5 路由(routing)2.6 数据包…

【Spring AOP + 自定义注解 + 动态数据源 实现主从库切换读写分离】—— 案例实战

&#x1f4a7; S p r i n g A O P 主从数据源切换 读写分离 自定义注解案例实战&#xff01; \color{#FF1493}{Spring AOP 主从数据源切换 读写分离 自定义注解 案例实战&#xff01;} SpringAOP主从数据源切换读写分离自定义注解案例实战&#xff01;&#x1f4a7; …

第三课:运算符

1.算数运算符 int a 20; int b 10; System.out.println(a b); // 30 System.out.println(a - b); // 10 System.out.println(a * b); // 200 System.out.println(a / b); // 2 System.out.println(a % b); // 0 --->模运算相当于数学中除法的余数 ⚠关于/除法 public s…

QEMU源码全解析19 —— QOM介绍(8)

接前一篇文章&#xff1a;QEMU源码全解析18 —— QOM介绍&#xff08;7&#xff09; 本文内容参考&#xff1a; 《趣谈Linux操作系统》 —— 刘超&#xff0c;极客时间 《QEMU/KVM》源码解析与应用 —— 李强&#xff0c;机械工业出版社 特此致谢&#xff01; 上一回讲到了Q…

2023 云原生编程挑战赛火热报名中!导师解析 Serverless 冷启动赛题

大赛介绍 第四届云原生编程挑战赛&#xff0c;是由阿里云主办&#xff0c;云原生应用平台、天池联合承办的云原生著名品牌赛事。 自 2015 年开始&#xff0c;大赛已经成功举办了八届&#xff0c;并从 2020 年开始升级为首届云原生编程挑战赛&#xff0c;共吸引了超过 53000 支…

python爬虫基本功(三)--爬虫所需网络协议知识超详细总结(下)

前言 大家好&#xff0c;这里是Kaiser&#x1f44f;。本文内容是衔接 &#x1f449;python爬虫基本功(二)—爬虫所需网络协议知识超详细总结&#xff08;上&#xff09;&#x1f448; 一文&#xff0c;为达更好的阅读效果&#xff0c;以及防止知识点出现“断层”&#xff0c;使…

Java方法的使用(重点:形参和实参的关系、方法重载、递归)

目录 一、Java方法 * 有返回类型&#xff0c;在方法体里就一定要返回相应类型的数据。没有返回类型&#xff08;void&#xff09;&#xff0c;就不要返回&#xff01;&#xff01; * 方法没有声明一说。与C语言不同&#xff08;C语言是自顶向下读取代码&#xff09;&#…

数电基础知识学习笔记

文章目录&#xff1a; 一&#xff1a;逻辑门 1.逻辑门电路的分类 1.1 按逻辑&#xff08;逻辑门&#xff09; 1.1.1 逻辑定义 1.1.2 常见数字电路相关符号 1.1.3 电路图表示 1.1.4 逻辑门电路图像符号 1.2 按电路结构 1.3 按功能特点 2.高低电平的含义 3.常见的门…

给定长度值length,把列表切分成每段长度为length的N段列表,Kotlin

给定长度值length&#xff0c;把列表切分成每段长度为length的N段列表&#xff0c;Kotlin import kotlin.random.Randomfun main(args: Array<String>) {var source mutableListOf<String>()val end Random.nextInt(30) 1for (i in 0 until end) {source.add(i.…

[SV] 文件操作

Verilog 提供了很多对文件进行操作的系统任务。经常使用的系统任务主要包括&#xff1a; 文件开、闭&#xff1a;​$fopen​, ​$fclose​, ​$ferror​文件写入&#xff1a;​$fdisplay​, ​$fwrite​, ​$fstrobe​, ​$fmonitor​字符串写入&#xff1a;​$sformat​, ​$…

python结合tesseract-ocr识别汉字的训练库过程

一、安装python 例如&#xff0c;安装路径为&#xff1a;C:\rtkapp\python-3.8.0 二、安装opencv 三、安装tesseract-ocr 安装完成后&#xff0c;在系统环境变量path中&#xff0c;添加安装路径C:\rtkapp\Tesseract-OCR 四、打开python安装pytesseract 五、安装java运行环境…

TenserRT(四)在 PYTORCH 中支持更多 ONNX 算子

第四章&#xff1a;在 PyTorch 中支持更多 ONNX 算子 — mmdeploy 0.12.0 文档 PyTorch扩充。 PyTorch转换成ONNX&#xff1a; PyTorch有实现。PyTorch可以转化成一个或者多个ONNX算子。ONNX有相应算子。 如果即没有PyTorch实现&#xff0c;且缺少PyTorch与ONNX的映射关系&…

太猛了,靠“吹牛”过顺丰一面,月薪30K

说在前面 在40岁老架构师尼恩的&#xff08;50&#xff09;读者社群中&#xff0c;经常有小伙伴&#xff0c;需要面试美团、京东、阿里、 百度、头条等大厂。 下面是一个5年小伙伴成功拿到通过了顺丰面试&#xff0c;拿到offer&#xff0c;月薪30K。 现在把面试真题和参考答…

一起学算法(插入排序篇)

概念&#xff1a; 插入排序&#xff08;inertion Sort&#xff09;一般也被称为直接插入排序&#xff0c;是一种简单的直观的排序算法 工作原理&#xff1a;将待排列元素划分为&#xff08;已排序&#xff09;和&#xff08;未排序&#xff09;两部分&#xff0c;每次从&…

Python毕业设计可用小游戏:5个热门类型,引爆学生热情!每个类型附单独案例!

游戏大全 前言1.格斗技能类小游戏2.益智塔防类小游戏3.MMO类型游戏4.养成类游戏5.经济类游戏 总结 前言 大家好&#xff0c;我是辣条哥 在当今数字化时代&#xff0c;编程已经成为一项不可或缺的技能。而Python作为一门简洁易学的编程语言&#xff0c;正受到越来越多学生的青睐…