28_计算机网络(Computer Networks)基础

news2025/1/19 14:36:08

本篇介绍计算机网络的基础知识。

文章目录

  • 1. 计算机网络历史
  • 2. 以太网" (Ethernet)
    • 2.1 以太网" (Ethernet)的简单形式及概念
    • 2.2 指数退避解决冲突问题
    • 2.3 利用交换机减少同一载体中设备
    • 2.4 互联网(The Internet)
    • 2.5 路由(routing)
    • 2.6 数据包(packs)解决阻塞问题
    • 2.7 分组交换(Packet Switching)
    • 2.8 物联网(internet of things)

1. 计算机网络历史

第一个计算机网络出现在1950~1960年代,通常在公司或研究室内部使用,为了方便信息交换,比把纸卡或磁带送到另一栋楼里更快速可靠,这叫"球鞋网络"
在这里插入图片描述
第二个好处是能共享物理资源,举个例子,与其每台电脑配一台打印机,大家可以共享一台联网的打印机,早期网络也会共享存储空间,因为每台电脑都配存储器太贵了
在这里插入图片描述
计算机近距离构成的小型网络叫局域网, 简称LAN(Local Area Networks),局域网能小到是同一个房间里的两台机器,或大到校园里的上千台机器尽管开发和部署了很多不同 LAN 技术,其中最著名和成功的是"以太网" (Ethernet) , 开发于1970年代在施乐的"帕洛阿尔托研究中心"诞生, 今日仍被广泛使用。

2. 以太网" (Ethernet)

2.1 以太网" (Ethernet)的简单形式及概念

以太网的最简单形式是:一条以太网电线连接数台计算机,当一台计算机要传数据给另一台计算机时,它以电信号形式,将数据传入电缆,当然 因为电缆是共享的,连在同一个网络里的其他计算机也看得到数据,但不知道数据是给它们的,还是给其他计算机的。
在这里插入图片描述
为了解决这个问题 以太网需要每台计算机有唯一的媒体访问控制地址,简称 MAC(Mdedia Acess Control)地址。
这个唯一的地址放在头部,作为数据的前缀发送到网络中,所以,计算机只需要监听以太网电缆只有看到自己的 MAC 地址,才处理数据。这运作得很好 现在制造的每台计算机都自带唯一的MAC地址,用于以太网和无线网络。
在这里插入图片描述

  • 多台电脑共享一个传输媒介,这种方法叫 "载波侦听多路访问(Carrier Sense Multiple Access)" 简称"CSMA"
  • 载体(carrier)指运输数据的共享媒介,以太网的"载体"是铜线, WiFi 的"载体"是传播无线电波的空气。
  • 很多计算机同时侦听载体,所以叫"侦听""多路访问"
  • 而载体传输数据的速度 叫"带宽"

2.2 指数退避解决冲突问题

不幸的是 使用共享载体有个很大的弊端,当网络流量较小时 计算机可以等待载体清空,然后传送数据,但随着网络流量上升 两台计算机想同时写入数据的概率也会上升,这叫冲突。 数据全都乱套了,就像两个人同时在电话里讲话。
在这里插入图片描述
在这里插入图片描述

幸运的是 计算机能够通过监听电线中的信号检测这些冲突,最明显的解决办法是停止传输,等待网络空闲, 然后再试一遍。
问题是其他计算机也打算这样做,其他等着的计算机可能在任何停顿间隙闯入,导致越来越多冲突,很快,每个人都一个接一个地讲话而且有一堆事要说,就像在家庭聚餐中和男朋友分手一样。

以太网有个超简单有效的解决方法,当计算机检测到冲突 就会在重传之前等待一小段时间,因为要举例,假设是 1 秒好了,当然 如果所有计算机用同样的等待时间 是不行的,它们会在一秒后再次冲突,所以加入一个随机时间 一台计算机可能等1.3秒,另一台计算机等待1.5秒,要是运气好 等1.3秒的计算机会醒来,发现载体是空闲的 然后开始传输,当1.5秒的计算机醒来后 会发现载体被占用会等待其他计算机完成。这有用,但不能完全解决问题 所以要用另一个小技巧,即"指数退避"

指数退避
正如前面所说,如果一台计算机在传输数据期间检测到冲突,会等一秒+随机时间,然而,如果再次发生冲突,表明有网络拥塞,这次不等1秒,而是等2秒,如果再次发生冲突 等4秒 然后8秒 16秒等等,直到成功传输,因为计算机的退避冲突次数降低了,数据再次开始流动起来 网络变得顺畅,这种指数级增长等待时间的方法叫:指数退避

2.3 利用交换机减少同一载体中设备

以太网和WiFi都用这种方法,很多其他传输协议也用,但即便有了"指数退避"这种技巧,想用一根网线链接整个大学的计算机还是不可能的,为了减少冲突+提升效率,我们需要减少同一载体中设备的数量。载体和其中的设备总称 "冲突域"(Collision Domain)

让我们回到之前以太网的例子 一根电缆连6台计算机,也叫一个冲突域,为了减少冲突 我们可以用交换机把它拆成两个冲突域,交换机位于两个更小的网络之间, 必要时才在两个网络间传数据。
在这里插入图片描述
交换机会记录一个列表,写着哪个 MAC 地址在哪边网络,如果A想传数据给C,交换机不会把数据转发给另一边的网络;
在这里插入图片描述

如果E想同一时间传数据给F,网络仍然是空的,两个传输可以同时发生;
在这里插入图片描述

但如果F想发数据给A 数据会通过交换机,两个网络都会被短暂占用;
在这里插入图片描述

2.4 互联网(The Internet)

大的计算机网络也是这样构建的,包括最大的网络 - 互联网(The Internet),也是多个连在一起的稍小一点网络,使不同网络间可以传递信息。
在这里插入图片描述
下篇将会细讲。

2.5 路由(routing)

这些大型网络有趣之处是,从一个地点到另一个地点通常有多条路线,这就带出了另一个话题路由(routing)
连接两台相隔遥远的计算机或网路,最简单的办法是分配一条专用的通信线路。早期电话系统就是这样运作的,假设"印第安纳波利斯"和"米苏拉"之间,有五条电话线,如果在1910年代,John 想打电话给 Hank,John要告诉操作员他想打到什么地方,然后工作人员手动将 John 的电话连到通往米苏拉的未使用线路,通话期间 这条线就被占用了, 如果五条线都被占用了John 要等待某条线空出来,这叫 "电路交换"
在这里插入图片描述

因为是把电路连接到正确目的地,能用倒是能用, 但不灵活而且价格昂贵,因为总有闲置的线路,好处是,如果有一条专属于自己的线路, 你可以最大限度地随意使用,无需共享,因此军队, 银行和其他一些机构,依然会购买专用线路来连接数据中心。
在这里插入图片描述

传输数据的另一个方法是 "报文交换(Message Switching)",“报文交换” 就像邮政系统一样,不像之前A和B有一条专有线路,消息会经过好几个站点,如果 John 写一封信给 Hank,信件可能从"印第安纳波利斯"到"芝加哥",然后"明尼阿波利斯" 然后"比林斯" 最后到"米苏拉"。
在这里插入图片描述

每个站点都知道下一站发哪里,因为站点有表格,记录到各个目的地,信件该怎么传,报文交换的好处是 可以用不同路由使通信更可靠更能容错。回到邮件的例子,如果"明尼阿波利斯"有暴风雪中断了通信, “芝加哥"可以传给"奥马哈”。
在这里插入图片描述
在这个例子里,城市就像路由器一样,消息沿着路由跳转的次数叫"跳数"(hop count),记录跳数很有用,因为可以分辨出路由问题,举例,假设芝加哥认为去米苏拉的最快路线是奥马哈,但奥马哈认为去米苏拉的最快路线是芝加哥,这就糟糕了,因为2个城市看到目的地是米苏拉,结果报文会在2个城市之间不停传来传去,不仅浪费带宽 而且这个路由错误需要修复!

这种错误会被检测到,因为跳数记录在消息中而且传输时会更新跳数,如果看到某条消息的跳数很高就知道路由肯定哪里错了,这叫"跳数限制(Hop Limit)"

2.6 数据包(packs)解决阻塞问题

报文交换的缺点之一是有时候报文比较大,会堵塞网络 因为要把整个报文从一站传到下一站后才能继续传递其他报文,传输一个大文件时 整条路都阻塞了,即便你只有一个1KB的电子邮件要传输也只能等大文件传完,或是选另一条效率稍低的路线,这就糟了,解决方法是:将大报文分成很多小块,叫"数据包(packs)"

就像报文交换 每个数据包都有目标地址因此路由器知道发到哪里,报文具体格式由"互联网协议(Internet Protocol)"定义,简称 IP,这个标准创建于 1970 年代,每台联网的计算机都需要一个IP地址,你可能见过,以点分隔的4组数字。例如 172.217.7.238 是 Google 其中一个服务器的IP地址,数百万台计算机在网络上不断交换数据瓶颈的出现和消失是毫秒级的,路由器会平衡与其他路由器之间的负载以确保传输可以快速可靠,这叫"阻塞控制(congestion control)"

有时,同一个报文的多个数据包会经过不同线路,到达顺序可能会不一样,这对一些软件是个问题。
在这里插入图片描述
在这里插入图片描述

2.7 分组交换(Packet Switching)

幸运的是,在 IP 之上还有其他协议,比如 TCP/IP, 可以解决乱序问题,我们下周会讲,将数据拆分成多个小数据包,然后通过灵活的路由传递,非常高效且可容错,如今互联网就是这么运行的,这叫"分组交换(Packet Switching)"
有个好处是 它是去中心化的,没有中心权威机构 没有单点失败问题。事实上 因为冷战期间有核攻击的威胁,所以创造了分组交换。
如今,全球的路由器协同工作,找出最高效的线路,用各种标准协议运输数据,比如 "因特网控制消息协议"( Internet Control Message Protocol ICMP)"边界网关协议"(Border Gateway Protocol BGP)
世界上第一个分组交换网络以及现代互联网的祖先是 ARPANET,名字来源于赞助这个项目的机构,美国高级研究计划局( Advanced Research Projects Agency)
在这里插入图片描述
上图是 1974 年整个 ARPANET 的样子,每个小圆表示一个地点比如大学或实验室,那里运行着一个路由器,并且有一台或多台计算机,能看到 “PDP-1” 和"IBM 360系统",甚至还有一个伦敦的 ATLAS是通过卫星连到网络里的。

2.8 物联网(internet of things)

显然 互联网在这几十年间发展迅速,如今不再只有几十台计算机联网据估计 有接近100亿台联网设备,而且互联网会继续快速发展,特别是如今各种智能设备层出不穷比如联网冰箱,恒温器以及其他智能家电,它们组成了"物联网"(internet of things)
在这里插入图片描述

第一部分到此结束 我们对计算机网络进行了概览,网络是一堆管子组成的吗?,额 算是吧。
下篇我们会讨论一些高级传输协议,然后讲万维网(World Wide Web)

3. 视频地址:计算机网络

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/813661.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spring AOP + 自定义注解 + 动态数据源 实现主从库切换读写分离】—— 案例实战

💧 S p r i n g A O P 主从数据源切换 读写分离 自定义注解案例实战! \color{#FF1493}{Spring AOP 主从数据源切换 读写分离 自定义注解 案例实战!} SpringAOP主从数据源切换读写分离自定义注解案例实战!💧 …

第三课:运算符

1.算数运算符 int a 20; int b 10; System.out.println(a b); // 30 System.out.println(a - b); // 10 System.out.println(a * b); // 200 System.out.println(a / b); // 2 System.out.println(a % b); // 0 --->模运算相当于数学中除法的余数 ⚠关于/除法 public s…

QEMU源码全解析19 —— QOM介绍(8)

接前一篇文章:QEMU源码全解析18 —— QOM介绍(7) 本文内容参考: 《趣谈Linux操作系统》 —— 刘超,极客时间 《QEMU/KVM》源码解析与应用 —— 李强,机械工业出版社 特此致谢! 上一回讲到了Q…

2023 云原生编程挑战赛火热报名中!导师解析 Serverless 冷启动赛题

大赛介绍 第四届云原生编程挑战赛,是由阿里云主办,云原生应用平台、天池联合承办的云原生著名品牌赛事。 自 2015 年开始,大赛已经成功举办了八届,并从 2020 年开始升级为首届云原生编程挑战赛,共吸引了超过 53000 支…

python爬虫基本功(三)--爬虫所需网络协议知识超详细总结(下)

前言 大家好,这里是Kaiser👏。本文内容是衔接 👉python爬虫基本功(二)—爬虫所需网络协议知识超详细总结(上)👈 一文,为达更好的阅读效果,以及防止知识点出现“断层”,使…

Java方法的使用(重点:形参和实参的关系、方法重载、递归)

目录 一、Java方法 * 有返回类型,在方法体里就一定要返回相应类型的数据。没有返回类型(void),就不要返回!! * 方法没有声明一说。与C语言不同(C语言是自顶向下读取代码)&#…

数电基础知识学习笔记

文章目录: 一:逻辑门 1.逻辑门电路的分类 1.1 按逻辑(逻辑门) 1.1.1 逻辑定义 1.1.2 常见数字电路相关符号 1.1.3 电路图表示 1.1.4 逻辑门电路图像符号 1.2 按电路结构 1.3 按功能特点 2.高低电平的含义 3.常见的门…

给定长度值length,把列表切分成每段长度为length的N段列表,Kotlin

给定长度值length&#xff0c;把列表切分成每段长度为length的N段列表&#xff0c;Kotlin import kotlin.random.Randomfun main(args: Array<String>) {var source mutableListOf<String>()val end Random.nextInt(30) 1for (i in 0 until end) {source.add(i.…

[SV] 文件操作

Verilog 提供了很多对文件进行操作的系统任务。经常使用的系统任务主要包括&#xff1a; 文件开、闭&#xff1a;​$fopen​, ​$fclose​, ​$ferror​文件写入&#xff1a;​$fdisplay​, ​$fwrite​, ​$fstrobe​, ​$fmonitor​字符串写入&#xff1a;​$sformat​, ​$…

python结合tesseract-ocr识别汉字的训练库过程

一、安装python 例如&#xff0c;安装路径为&#xff1a;C:\rtkapp\python-3.8.0 二、安装opencv 三、安装tesseract-ocr 安装完成后&#xff0c;在系统环境变量path中&#xff0c;添加安装路径C:\rtkapp\Tesseract-OCR 四、打开python安装pytesseract 五、安装java运行环境…

TenserRT(四)在 PYTORCH 中支持更多 ONNX 算子

第四章&#xff1a;在 PyTorch 中支持更多 ONNX 算子 — mmdeploy 0.12.0 文档 PyTorch扩充。 PyTorch转换成ONNX&#xff1a; PyTorch有实现。PyTorch可以转化成一个或者多个ONNX算子。ONNX有相应算子。 如果即没有PyTorch实现&#xff0c;且缺少PyTorch与ONNX的映射关系&…

太猛了,靠“吹牛”过顺丰一面,月薪30K

说在前面 在40岁老架构师尼恩的&#xff08;50&#xff09;读者社群中&#xff0c;经常有小伙伴&#xff0c;需要面试美团、京东、阿里、 百度、头条等大厂。 下面是一个5年小伙伴成功拿到通过了顺丰面试&#xff0c;拿到offer&#xff0c;月薪30K。 现在把面试真题和参考答…

一起学算法(插入排序篇)

概念&#xff1a; 插入排序&#xff08;inertion Sort&#xff09;一般也被称为直接插入排序&#xff0c;是一种简单的直观的排序算法 工作原理&#xff1a;将待排列元素划分为&#xff08;已排序&#xff09;和&#xff08;未排序&#xff09;两部分&#xff0c;每次从&…

Python毕业设计可用小游戏:5个热门类型,引爆学生热情!每个类型附单独案例!

游戏大全 前言1.格斗技能类小游戏2.益智塔防类小游戏3.MMO类型游戏4.养成类游戏5.经济类游戏 总结 前言 大家好&#xff0c;我是辣条哥 在当今数字化时代&#xff0c;编程已经成为一项不可或缺的技能。而Python作为一门简洁易学的编程语言&#xff0c;正受到越来越多学生的青睐…

03_使用execle表生成甘特图

背景 每次排期都需要话很多时间 很可能排期还不对头 这时候需要一个表能看到 1.什么时候项目结束 开始 转阶段 2.当前手上的活能不能做完 当前阶段手上有多少活 3.产品经理每次修改完计划迅速排期 甘特图生成 execle表生成 1.需要使用亿图创建甘特图 2.把当前的甘特图数据进…

使用Excel建立贷款损失计算器

前几天上了一门Excel课程&#xff0c;掌握了一些新的小技能&#xff0c;比如模拟运算表和控件以及动态图表的使用&#xff0c;结合工作内容进行了下实操练习。 一、控件和动态图表的使用 以贷款产品的损益测算为例&#xff0c;计算在不同资金成本、获客成本、提前还款损失以及风…

SpringBoot2.5.6整合Elasticsearch7.12.1

SpringBoot2.5.6整合Elasticsearch7.12.1 下面将通过SpringBoot整合Elasticseach&#xff0c;SpringBoot的版本是2.5.6&#xff0c;Elasticsearch的版本是7.12.1。 SpringBoot整合Elasticsearch主要有三种方式&#xff0c;一种是通过elasticsearch-rest-high-level-client&am…

c++里的基础类 is_empty_v<_Ty1>

&#xff08;1&#xff09;为什么要研究这个问题&#xff0c;因为包括智能指针等很多源代码里都会使用 _Compressed_pair 这个类&#xff0c;其是一对值。研究这个类&#xff0c;就牵涉另一个更基础的类 is_empty_v<_Ty1> &#xff08;2&#xff09; is_empty_v<_Ty1&…

内部类(下)匿名内部类,静态内部类的使用

文章目录 前言一、匿名内部类二、静态内部类三、内部类的继承总结 前言 该文将会介绍匿名内部类、静态内部类的使用&#xff0c;补充完毕java中的内部类。补充内容为向上转型为接口、使用this关键字获取引用、内部类的继承。 一、匿名内部类 定义&#xff1a;没有名称的内部类。…

redis 淘汰策略和持久化

文章目录 一、淘汰策略1.1 背景1.2 淘汰策略 二、持久化2.1 AOF日志2.1.1 AOF配置2.1.2 AOF策略2.1.3 AOF缺点2.1.4 AOF Rewrite2.1.5 AOF Rewrite配置2.1.6 AOF Rewrite缺点2.1.7 fork进程时的写时复制2.1.8 大key对持久化的影响 2.2 RDB快照2.2.1 RDB配置2.2.2 RDB缺点 2.3 混…