C++ 哈希的应用【布隆过滤器】

news2025/1/21 3:04:31

✨个人主页: 北 海
🎉所属专栏: C++修行之路
🎃操作环境: Visual Studio 2022 版本 17.6.5

成就一亿技术人


文章目录

  • 🌇前言
  • 🏙️正文
    • 1、字符串比较
    • 2、布隆过滤器的概念
    • 3、布隆过滤器的实现
      • 3.1、基本结构
      • 3.2、插入
      • 3.3、查找
      • 3.4、删除
      • 3.5、测试
      • 3.6、优化方案
    • 4、布隆过滤器小结
    • 5、海量数据面试题(哈希切割)
      • 5.1、题目一
      • 5.2、题目二
  • 🌆总结


🌇前言

注册账号是进行网络冲浪的第一步操作,而拥有一个具有个性且独一无二的用户昵称是非常重要的,很多人在填写昵称时,常常会看到 此昵称已存在 的提示,系统是如何快速知道当前昵称是否存在呢?总不能挨个去遍历对比吧,这时候就需要我们本文中的主角: 布隆过滤器

图示


🏙️正文

1、字符串比较

常见的字符串比较方法是 ASCII 码值进行比较,直到两个字符串同时结束,说明两者一致

比如字符串1 abcdef 和字符串2 azbmcy
显然两个字符串不一样

这种比较方法很直接,也很可靠,但缺点也很明显:需要对字符串进行遍历
一个字符串还好,如果是几千万个字符串呢?不但需要消耗大量存储空间,查找效率也很低,此时填写个昵称,服务器都要跑一会才有反映,这是用户所无法容忍的

因此人们想出了另一个方法,利用哈希映射 的思想,计算出 哈希值,存储这个值即可,可以借此 标识字符串是否存在
在进行字符串(昵称)比较时,只需要计算出对应的 哈希值,然后看看该位置是否存在即可

哈希值 也是一个整数啊,可以利用 位图 进行 设置,查找字符串时,本质上是在 查找哈希值是否在位图中存在

字符串有千万种组合,但字符是有限的,难免会出现 误判 的情况(此处的 哈希函数 为每个字符相加)

图示

为了尽可能降低 误判率,在 位图 的基础之上设计出了 布隆过滤器

接下来看看什么是 布隆过滤器

图示


2、布隆过滤器的概念

这里是 布隆 可不是 英雄联盟中的 弗雷尔卓德之心 布隆,毕竟他也不能解决字符串比较问题,他只是 召唤师峡谷 中的一个坦克,主要负责 过滤(吸收) 敌方的伤害

布隆过滤器 是由 布隆(Burton Howard Bloom)1970 年提出的一种 紧凑型的、比较巧妙概率型数据结构,特点是 高效地插入和查询

布隆过滤器 的核心在于通过添加 哈希函数降低误判率

举个例子,如果每个人的名字都只有一个字,那么肯定存在很多重名的情况,但如果把名字字数增多,重复的情况就会大大缓解

所以 布隆过滤器 其实很简单,无非就是映射字符串时,多安排几个不一样的 哈希函数,多映射几个 比特位,只有当每个 比特位 的为 1 时,才能验证这个字符串是存在的

图示


3、布隆过滤器的实现

3.1、基本结构

布隆过滤器 离不开 位图,此时可以搬出之前实现过的 位图结构

既然需要增加 哈希函数,我们可以在模板中添加三个 哈希函数 的模板参数以及待存储的数据类型 K

namespace Yohifo
{
	template<size_t N,
			class K,
			class Hash1,
			class Hash2,
			class Hash3>
	class BloomFilter
	{
	public:
		//……

	private:
		Yohifo::bitset<N> _bits;	//位图结构
	};
}

显然,这三个 哈希函数 的选择是十分重要的,我们在这里提供三种较为优秀的 哈希函数(字符串哈希算法),分别是 BKDRHashAPHash 以及 DJBHash

函数原型如下(写成 仿函数 的形式,方便传参与调用):

struct BKDRHash
{
    size_t operator()(const std::string& str)
    {
        size_t hash = 0;
        for (auto e : str)
        {
            hash = hash * 131 + (size_t)e;
		}
		
        return hash;
    }
};

struct APHash
{
    size_t operator()(const std::string& str)
    {
        size_t hash = 0;
        for (auto e : str)
        {
            if (((size_t)e & 1) == 0)
            {
                hash ^= ((hash << 7) ^ (size_t)e ^ (hash >> 3));
            }
            else
            {
                hash ^= (~((hash << 11) ^ (size_t)e ^ (hash >> 5)));
            }
        }

        return hash;
    }
};

struct DJBHash
{
    size_t operator()(const std::string& str)
    {
        if (str.empty())
            return 0;

        size_t hash = 5381;
        for (auto e : str)
        {
            hash += (hash << 5) + (size_t)e;
        }

        return hash;
    }
};

因为 布隆过滤器 中最常存储的数据类型是 字符串,并且三个 哈希函数 我们也已经有了,所以可以将 布隆过滤器 中模板添加上 缺省值

template<size_t N,
		class K = std::string,
		class Hash1 = BKDRHash,
		class Hash2 = APHash,
		class Hash3 = DJBHash>

如何创建一个布隆过滤器

BloomFilter<100> bf;    //最大值为 100 的布隆过滤器

3.2、插入

插入 无非就是利用三个 哈希函数 计算出三个不同的 哈希值,然后利用 位图 分别进行 设置 就好了

void set(K& key)
{
    size_t HashI1 = Hash1()(key) % N;   //% N 是为了避免计算出的哈希值过大
    _bits.set(HashI1);

    size_t HashI2 = Hash2()(key) % N;
    _bits.set(HashI2);

    size_t HashI3 = Hash3()(key) % N;
    _bits.set(HashI3);
}

注意: 布隆过滤器的插入操作是一定会成功的,因为不管是什么字符串,都可以在其对应的位置留下痕迹

3.3、查找

查找 某个字符串时,需要判断它的每个 哈希值 是否都存在,如果有一个不存在,那么这个字符串必然是不存在的

 bool test(const K& key)
 {
     //过滤不存在的情况,至于是否存在,还得进一步判断
     size_t HashI1 = Hash1()(key) % N;
     if (_bits.test(HashI1) == false)
         return false;

     size_t HashI2 = Hash2()(key) % N;
     if (_bits.test(HashI2) == false)
         return false;

     size_t HashI3 = Hash3()(key) % N;
     if (_bits.test(HashI3) == false)
         return false;

     //经过层层过滤后,判断字符串可能存在
     return true;
 }

查找 函数可以很好的体现 过滤 的特性

如何判断一个人是否存在
不能盲目去查找,而是应该根据姓名,查询身份证号、住址等个人信息,如果这些信息都没有,那么就说明这个人不存在,因为这些信息足够过滤出结果了;如果出现重名或信息重复的情况,则需要进一步判断,这就是说明 通过过滤判断 “存在” 是不准确的,但判断 “不存在” 是准确的

布隆过滤器判断 “不在” 是准确的,判断 “在” 是不准确的

比如,字符串1映射了 1、6、7 号位置,字符串2映射了 2、4、5 号位置,字符串3映射了 1、3、4 号位置,虽然这三个字符串不会相互影响,但如果此时字符串4映射的是 1、2、3 号位置,会被误断为 存在,理论上 字符串存储位置越密集,误判率越高

图示

所以对于一些敏感数据,如果要判断是否存在,不能只依靠 布隆过滤器,而是使用 布隆过滤器 + 数据库 的方式进行双重验证

当然,如果 布隆过滤器 判断字符串不存在,那么就是真的不存在,因为这是绝对准确的

布隆过滤器 能容忍误判的场景:注册时,判断昵称是否存在

3.4、删除

一般的 布隆过滤器 不支持删除,一旦进行了删除(重置),会影响其他字符串

图示

表面上只删除了 “腾讯”,但实际上影响了 “百度”,在验证 “百度” 是否存在时,会被判断为 不存在,此时只有三个字符串,如果有更多呢?造成的影响是很大的,所以对于一般的 布隆过滤器,是不支持删除操作的

如何让布隆过滤器支持删除?
关于共用同一份资源这个问题,我们以前就已经见过了,比如 命名管道,当我们试图多次打开同一个 命名管道 时,操作系统实际上并不会打开多次,因为这样是很影响效率的,实际每打开一次 命名管道,其中的 计数器++,当关闭 命名管道 时,计数器--,直到 计数器0 时,命名管道 才会被真正关闭

这不就是 引用计数 的思想吗?

我们可以给每一个 比特位 带上一个 引用计数器,用来表示当前位置存在几个映射关系,这样 布隆过滤器 就能支持 删除 操作了

但这未免也太本末倒置了,位图 的优点是 高效且空间利用率高,如果给每一个 比特位 都挂上一个 引用计数器,会导致 位图 占用的内存资源膨胀,浪费很多不必要的空间,并且 删除 操作需求不大,没必要添加

3.5、测试

接下来测试一下 布隆过滤器 是否有用

void TestBloomFilter1()
{
    BloomFilter<100> bf;    //最大值为 100 的布隆过滤器

    bf.set("aaaaa");
    bf.set("bbbbb");
    bf.set("ccccc");
    bf.set("ddddd");
    bf.set("eeeee");

    std::cout << "bbbbb: " << bf.test("bbbbb") << std::endl;
    std::cout << "ddddd: " << bf.test("ddddd") << std::endl;

    std::cout << "============" << std::endl;

    std::cout << "aaaa: " << bf.test("aaaa") << std::endl;  //相似字符串
    std::cout << "CCCCC: " << bf.test("CCCCC") << std::endl;
    std::cout << "zzzzz: " << bf.test("zzzzz") << std::endl;    //不相似字符串
    std::cout << "wwwww: " << bf.test("wwwww") << std::endl;
}

图示

可以正确进行判断,接下来看看 设置 的每个字符串的 哈希值 是多少

图示

同时在三个 哈希值 的叠加下,误判 的概率被大大降低了,尽管如此,在判断字符串存在时,仍然存在较高的 误判率,可以通过下面的程序计算 误判率

测试方法:插入约 10 w 个字符串(原生),对原字符串进行微调后插入(近似),最后插入等量的完全不相同的字符串(不同),分别看看 原生近似原生不同 字符串之间的误判率

void TestBloomFilter2()
{
   //测试误判率
   //构建一组字符串 + 一组相似字符串 + 一组完全不同字符串
   //通过 test 测试误判率

   const size_t N = 100000;	//字符串数
   std::string str = "https://blog.csdn.net/weixin_61437787?spm=1000.2115.3001.5343";

   //构建原生基本的字符串
   std::vector<std::string> vsStr(N);
   for (size_t i = 0; i < N; i++)
   {
       std::string url = str + std::to_string(i);
       vsStr[i] = url;	//保存起来,后续要用
   }

   //构建相似的字符串
   std::vector<std::string> vsSimilarStr(N);
   BloomFilter<N> bfSimilarStr;
   for (size_t i = 0; i < N; i++)
   {
       std::string url = str + std::to_string(i * -1);
       vsSimilarStr[i] = url;
       bfSimilarStr.set(url);
   }

   //构建完全不一样的字符串
   str = "https://leetcode.cn/problemset/all/";
   std::vector<std::string> vsDiffStr(N);
   BloomFilter<N> bfDiffStr;
   for (size_t i = 0; i < N; i++)
   {
       std::string url = str + std::to_string(i);
       vsDiffStr[i] = url;
       bfDiffStr.set(url);
   }

   //误判率检测:原生 <---> 近似
   double missVal = 0;
   for (auto e : vsStr)
   {
       if (bfSimilarStr.test(e) == true)
           missVal++;
   }

   //误判率检测:原生 <---> 不同
   double diffVal = 0;
   for (auto e : vsStr)
   {
       if (bfDiffStr.test(e) == true)
           diffVal++;
   }

   std::cout << "原生 <---> 近似 误判率:" << missVal / N * 100 << "%" << std::endl;
   std::cout << "原生 <---> 不同 误判率:" << diffVal / N * 100 << "%" << std::endl;
}

图示

显然,此时存在很高的误判率

3.6、优化方案

可以从两个方面进行优化:

  1. 增加哈希函数的个数(不是很推荐)
  2. 扩大布隆过滤器的长度,使数据更分散

因此我们可以控制 布隆过滤器 的长度,降低 误判率

如何理解空间扩大后,误判率会降低?

想想 地广人稀的西伯利亚地狭人稠的香港,人口越稠密,找人时越有可能发生误判

图示

那么如何选择 布隆过滤器 的长度,做到 平衡误判率与空间占用呢

《详解布隆过滤器的原理,使用场景和注意事项》

图示
图示

经过计算得出,长度为 3~8 时,效果最好

  • 实际位图的大小为 N * _len

对原来的 布隆过滤器 进行修改,结合 误判率 与 空间,选择较为折中的 6 作为 布隆过滤器 的长度

template<size_t N,
		class K = std::string,
		class Hash1 = BKDRHash,
		class Hash2 = APHash,
		class Hash3 = DJBHash>
class BloomFilter
{
       static const int _len = 6;   //布隆过滤器的长度
       static const int _size = N * _len; //位图的大小
public:
       void set(const K& key)
       {
           size_t HashI1 = Hash1()(key) % _size;   //% N 是为了避免计算出的哈希值过大
           _bits.set(HashI1);

           size_t HashI2 = Hash2()(key) % _size;
           _bits.set(HashI2);

           size_t HashI3 = Hash3()(key) % _size;
           _bits.set(HashI3);
       }

       bool test(const K& key)
       {
           //过滤不存在的情况,至于是否存在,还得进一步判断
           size_t HashI1 = Hash1()(key) % _size;
           if (_bits.test(HashI1) == false)
               return false;

           size_t HashI2 = Hash2()(key) % _size;
           if (_bits.test(HashI2) == false)
               return false;

           size_t HashI3 = Hash3()(key) % _size;
           if (_bits.test(HashI3) == false)
               return false;

           //经过层层过滤后,判断字符串可能存在
           return true;
       }

private:
	Yohifo::bitset<_size> _bits;	//位图结构
};

此时再来看看之前的测试:

图示

误判率降至 5% 左右

对于 用户登录时检测昵称是否存在 这件事上,已经足够用了

如果想要最求更高的准度,可以使用 布隆过滤器 + 数据库 双重验证


4、布隆过滤器小结

总的来说,作为 哈希思想 的衍生品,布隆过滤器 实现了字符串的 快速查找与极致的空间利用,在需要判断字符串是否存在的场景中,判断 “不在”,是值得信赖的

优点:

  • 查找效率极高,为 O(K),其中 K 表示哈希函数的个数
  • 哈希函数之间并没有直接关系,方便进行硬件计算
  • 数据量很大时,布隆过滤器可以表示全集
  • 可以利用多个布隆过滤器进行字符串的 交集、并集、差集运算
  • 在可以容忍误判率的场景中,布隆过滤器优于其他数据结构
  • 布隆过滤器中存储的数据无法逆向复原,具有一定的安全性

缺点:

  • 存在一定的误判性
  • 无法对元素本身进行操作,仅能判断存在与否
  • 一般不支持删除功能
  • 采取计数删除的方案时,可能存在 计数回绕 的问题

实际应用场景:

  • 注册时对于 昵称、用户名、手机号的验证
  • 减少磁盘 IO 或者网络请求,因为一旦一个值必定不存在的话,我们可以不用进行后续昂贵的查询请求

总之,能被 布隆过滤器 拦截(过滤)下来的数据,一定是不存在的


5、海量数据面试题(哈希切割)

5.1、题目一

给两个文件,分别有 100 亿个 query,我们只有 1 GB 内存,如何找到两个文件交集?分别给出
精确算法和近似算法

query查询语句,比如 网络请求、SQL 语句等,假设一个 query 语句占 50 Byte,单个文件中的 100 亿个 query500 GB 的空间,两个文件就是 1000 GB

下面来看看解法

近似解法:借助布隆过滤器,先存储其中一个文件的 query 语句,这里给每个 query 语句分配 4 比特位,100 亿个就占约 1 GB 的内存,可以存下,存储完毕后,再从另一个文件读取 query 语句,判断是否在 布隆过滤器 中,“在” 的就是交集。因为 布隆过滤器 判断 “在” 不准确,符合题目要求的 近似算法

精确解法:对于这种海量数据,需要用到哈希分割,我们这里把单个文件(500 GB 数据)分割成 1000 个小文件,平均每个文件大小为 512 Mb,再将小文件读取到内存中;另一个文件也是如此,读取两个大文件中的小文件后,可以进行交集查找,再将所有小文件中的交集统计起来,就是题目所求的交集了

图示

此时存在一个问题:如果我们是直接平均等分成 1000 个小文件的话,我们也不知道小文件中相似的 query 语句位置,是能把每个小文件都进行匹配对比,这样未免为太慢了

所以不能直接平均等分,需要使用 哈希分割 进行切分

i = HashFunc(query) % 1000

不同的 query 会得到不同的下标 i,这个下标 i 决定着这条 query 语句会被存入哪个小文件中,显然,一样的 query 语句计算出一样的下标,也就意味着它们会进入下标相同的小文件中,经过 哈希切割 后,只需要将 大文件 A 中的小文件 0大文件 B 中的小文件 0 进行求 交集 的操作就行了,这样能大大提高效率

图示

但是,此时存在一个 问题:如果因哈希值一致,而导致单个小文件很大呢?

此时如果小文件变成了 1GB、2GB、3GB 甚至更大,就无法被加载至内存中(算法还有消耗)

解决方法很简单:借助不同的哈希函数再分割

即使在同一个小文件中,不同的 query 语句经过不同的 哈希函数 计算后,仍可错开,怕的是 存在大量重复的 query,此时 哈希函数 就无法 分割 了,因为计算出的 哈希值 始终一致

图示

所以面对小文件过大的问题,目前有两条路可选:

  1. 大多都是相同、重复的 query,无法分割,只能按照大小,放到其他小文件中
  2. 大多都是不相同的 query,可以使用 哈希函数 再分割

这两条路都很好走,关键在于如何选择?
小文件中实际的情况我们是无法感知的,但可以通过特殊手段得知:探测

对于大于 512 Mb 的小文件,我们可以对其进行读取,判断属于情况1、还是情况2

  • 首先准备一个 unorder_set,目的很简单:去重
  • 读取文件中的 query 语句,存入 unordered_set
  • 如果小文件读取结束后,没有发生异常情况,说明属于情况1:大多都是相同、重复的 query 语句,把这些重复率高的数据打散,放置其他 512 Mb 的小文件中
  • 如果小文件读取过程中,出现了一个异常,捕获结果为 bad_alloc,说明读取到的大多都是不重复的 query 语句,因为我们内存只有 1 GB,抛出的异常是 内存爆了,异常的抛出意味着这个小文件属于情况2,可以使用其他的 哈希函数 对其进行再分割,分成 512 Mb 的小文件

如此一来,这个文件就被解决了,核心在于:利用哈希切割将数据分为有特性的小文件、利用抛异常得知小文件的实际情况

5.2、题目二

给一个超过 100 GB大小的 log file, log 中存着 IP 地址, 设计算法找到出现次数最多的 IP 地址?

这题本质上也是在考 哈希分割,将 log file 文件中的 IP 地址看作上一题中的 query 语句,得知文件大小约为 500 GB

因为这里没有内存限制,我们可以将其分为 500 个小文件,每个小文件大小为 1 GB

图示
这里分为小文件的目的是 让相同的 IP 分至同一个小文件中

针对较大的小文件,依然采取 其他哈希函数继续分割分给其他小文件的做法

读取单个小文件时,利用 unordered_map 统计 IP 地址的出现次数,读取完毕后,遍历 unordered_map 即可得知出现次数最多的 IP 地址

与上题条件相同,如何找到 Top KIP ?如何直接用 Linux 系统命令实现?

涉及 Top K 的问题都可以通过 优先级队列(堆) 解决,在第一问的基础上,构建一个大小为 K小堆,将高频出现的 IP 地址入堆,筛选出 Top KIP 即可

至于如何利用 Linux 命令解决?

sort log_file | uniq -c | sort -nrk1,1 | head -K

解释:

  • sort log_file 表示对 log_file 文件进行排序
  • uniq -c 表示统计出其中每个 IP 的出现次数
  • sort -nrk1,1 表示按照每个 IP 的出现次数再进行排序
  • head -k 表示选择前 kIP 地址显示

注意: 以上操作都需要借助管道 | 因为它们都是有关联性的


🌆总结

以上就是本次关于 C++ 哈希的应用【布隆过滤器】的全部内容了,在本文中我们主要学习了布隆过滤器的相关知识,再一次对哈希思想有了更深层次的理解(多组映射),在简单模拟实现布隆过滤器之后,顺便解决了几道海量数据面试题,从中学到了哈希分割这一重要思想,哈希是一个被高频使用的工具,因为它实在是太香了,想要玩的更溜,还需要勤加练习


星辰大海

相关文章推荐

C++ 进阶知识

C++ 哈希的应用【位图】

C++【哈希表的完善及封装】

C++【哈希表的模拟实现】

C++【初识哈希】

C++【一棵红黑树封装 set 和 map】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/813081.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

谈谈网络端口的概念、分类,以及常见的端口号

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 作者会持续更新网络知识和python基础知识&#xff0c;期待你的关注 目录 一、网络端口的概念 二、网络端口的分类 1、公认端口 2、注册端口 3、动态和私有端口 三、网络端口的作用 四、常见的端口号 1、…

7.7 SpringBoot实战 管理员借阅审核列表 --分页和枚举的使用

文章目录 前言一、需求二、定义接口 BookAdminController三、核心实现 BookBorrowService新建 BookBorrowService 接口定义如下&#xff1a;新建 BookBorrowServiceImpl 类&#xff0c;核心实现逻辑&#xff1a;新建 BookBorrowBO 四、图书借阅状态枚举 BookBorrowStatusEnum五…

orm(连接MySQL,增删改,创建表,样例)

1.启动数据库 mysql -u root -p password:(输入密码)2.创建数据库 create database stu DEFAULT CHARSET utf8 COLLATE utf8_general_ci;3.更改Django中settings.py文件配置 Django连接数据库&#xff1a; DATABASES {default: {ENGINE: django.db.backends.mysql,NAME: st…

NICE-SLAM代码复现和解析(解决使用yaml文件配置conda环境时下载慢的问题)

代码运行 代码地址&#xff1a;https://github.com/cvg/nice-slam/tree/master 环境配置 下载压缩包&#xff0c;打开environment.yaml文件 向yaml文件中添加如下代码 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.ustc.edu.cn/anacon…

docker中涉及的挂载点总结

文章目录 1.场景描述2. 容器信息在主机上位置3. 通过docker run 命令4、通过Dockerfile创建挂载点5、容器共享卷&#xff08;挂载点&#xff09;6、最佳实践&#xff1a;数据容器 1.场景描述 在介绍VOLUME指令之前&#xff0c;我们来看下如下场景需求&#xff1a; 1&#xff…

关于OAuth2.0的一些基本知识

本文记录下关于OAuth2.0的一些基本知识 文章目录 什么是 OAuth2.0OAuth2.0 架构术语介绍Web 服务器用户代理本机应用程序本文小结 什么是 OAuth2.0 OAuth 是一种开放的授权协议&#xff0c;它是目前最流行的授权机制。它允许将存储在一个站点上的资源共享到另一个站点&#xff…

享元模式——实现对象的复用

1、简介 1.1、概述 当一个软件系统在运行时产生的对象数量太多&#xff0c;将导致运行代价过高&#xff0c;带来系统性能下降等问题。例如&#xff0c;在一个文本字符串中存在很多重复的字符&#xff0c;如果每个字符都用一个单独的对象来表示&#xff0c;将会占用较多的内存…

打印Winform控件实现简陋版的分页打印(C#)

本文的代码可以从这里获取&#xff1a;winformDemo.rar 张祥裕/分享的资源名称 - Gitee.com 作者的水平有限&#xff0c;如有错误&#xff0c;望指正。 为了简单起见&#xff0c;纸张大小&#xff0c;打印机等信息按照默认的来&#xff0c;本文的实现方案是&#xff1a;打印Pa…

超全整理,Jmeter性能测试-常用Jmeter第三方插件详解(超细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 Jmeter作为一个开…

【回眸】备考PMP考点汇总 三(距离考试还有20天)

目录 前言 【回眸】备考PMP考点汇总 三&#xff08;距离考试还有20天&#xff09; 29、管理质量 30、获取资源 31、建设团队 32、管理团队 33、管理沟通 34、实施风险应对 35、实施采购 36、管理相关方参与 37、监控项目工作&#xff08;10%&#xff09; 38、实施整…

php://filter绕过死亡exit

文章目录 php://filter绕过死亡exit前言[EIS 2019]EzPOP绕过exit 参考 php://filter绕过死亡exit 前言 最近写了一道反序列化的题&#xff0c;其中有一个需要通过php://filter去绕过死亡exit()的小trick&#xff0c;这里通过一道题目来讲解 [EIS 2019]EzPOP 题目源码&#…

*CTF 2023 web jwt2struts 题解wp

jwt2struts 根据题目名字猜测&#xff0c;这题考察jwt和Struts2 包里面果然有一个cookie 验证了&#xff0c;是jwt eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1c2VyIiwiZXhwIjoyMDA2MjI1MjgxfQ.F7vOtdqg48M1DYK4tVZywTipIYDqKfsBSju7ekLSecU 我们的目标应该是把user改…

深蓝学院C++基础与深度解析笔记 第13章 模板

1. 函数模板 ● 使用 template 关键字引入模板&#xff1a; template<typename T> //声明&#xff1a;T模板形参void fun(T); // T 函数形参template<typename T> //定义void fun(T) {...}– 函数模板不是函数 –…

安全学习DAY12_信息打点-Web应用信息搜集

信息打点-Web应用 文章目录 信息打点-Web应用业务资产企业查信息的目的 Web应用信息搜集Web网站域名搜集WEB单域名WEB子域名OneForAll&#xff08;子域名收集工具&#xff09; WEB网站架构资产WEB指纹识别资产 常用查询平台汇总查企业信息查备案信息查公众号信息域名注册查询IP…

【Linux】进程篇Ⅱ:进程开始、进程终止、进程等待、程序替换

文章目录 五、fork 函数&#xff0c;创建进程写时拷贝 六、进程终止1. 退出码2. 如何终止程序 七、进程等待1. 概念2. wait 函数waitpid 函数 &#x1f53a; 3. 阻塞等待 八、程序替换1. execl2. execv3. execlp4. execvp5. execle &#x1f53a;6. execvpe 、execve 一个简易的…

vmware的window中安装GNS3

1.向vmware中的windows虚拟机传送文件 点击虚拟机-安装VMwaretools 安装在虚拟机上面 此图标代表已经成功&#xff0c;将文件复制到虚拟机上里面 2.安装 安装gns3&#xff0c;需要先安装winpcap&#xff08;检查网卡&#xff09;和wireshark&#xff08;对winpcap上数据进行抓…

16- C++多态-4 (C++)

第五章 多态 5.1 多态的引入 思考&#xff1a;在之前实现的英雄模型中&#xff0c;假如实现某个接口可以传入一个英雄&#xff0c;在该接口中可以对英雄的力量、敏捷和智力进行加强&#xff0c;请问该接口的参数该如何设计&#xff1f; 以上解决办法利用了C中的多态&#xf…

51单片机定时器/计数器

目录 1、定时器/计数器0/1介绍 1.1 定时器介绍 1.2 单片机定时/计数器原理 2、定时器/计数器0和1的相关寄存器 2.1 定时器/计数器控制寄存器TCON 2.2 定时器/计数器工作模式寄存器TMOD 2.3 定时器/计数器工作模式 2.3.1 模式0(13位定时器/计数器) 2.3.2 模式1(16位定…

CSDN如何输入公式

方法分三步&#xff1a; 1&#xff09;预先设置MathType的复制剪切选项 2&#xff09;将MathType已经编写好的公式复制到CSDN 3&#xff09;把复制的公式文本&#xff0c;首尾的“\[”和“\]”符号替换成“$$”和“$$” 1&#xff09;预先设置MathType的复制剪切选项 2&#x…

海量数据存储组件Hbase

hdfs hbase NoSQL数据库 支持海量数据的增删改查 基于Rowkey查询效率特别高 kudu 介于hdfs和hbase之间 hbase依赖hadoopzookeeper&#xff0c;同时整合框架phoenix(擅长读写),hive&#xff08;分析数据&#xff09; k&#xff0c;v 储存结构 稀疏的&#xff08;为空的不存…