【机器学习】Cost Function

news2024/11/16 5:45:29

Cost Function

    • 1、计算 cost
    • 2、cost 函数的直观理解
    • 3、cost 可视化
    • 总结
    • 附录

首先,导入所需的库:

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_uni import plt_intuition, plt_stationary, plt_update_onclick, soup_bowl
plt.style.use('./deeplearning.mplstyle')

1、计算 cost

在这里,术语 ‘cost’ 是衡量模型预测房屋目标价格的程度的指标。

具有一个变量的 cost 计算公式为
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (1) J(w,b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2 \tag{1} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2(1)

其中,
f w , b ( x ( i ) ) = w x ( i ) + b (2) f_{w,b}(x^{(i)}) = wx^{(i)} + b \tag{2} fw,b(x(i))=wx(i)+b(2)

  • f w , b ( x ( i ) ) f_{w,b}(x^{(i)}) fw,b(x(i)) 是使用参数 w , b w,b w,b 对样例 i i i 的预测。
  • ( f w , b ( x ( i ) ) − y ( i ) ) 2 (f_{w,b}(x^{(i)}) -y^{(i)})^2 (fw,b(x(i))y(i))2 是目标值和预测值之间的平方差。
  • m m m 个样例的平方差进行相加,并除以 2m 得到 cost, 即 J ( w , b ) J(w,b) J(w,b).

下面的代码通过循环每个样例来计算 cost。

def compute_cost(x, y, w, b): 
    """
    Computes the cost function for linear regression.
    
    Args:
      x (ndarray (m,)): Data, m examples 
      y (ndarray (m,)): target values
      w,b (scalar)    : model parameters  
    
    Returns
        total_cost (float): The cost of using w,b as the parameters for linear regression
               to fit the data points in x and y
    """
    # number of training examples
    m = x.shape[0] 
    
    cost_sum = 0 
    for i in range(m): 
        f_wb = w * x[i] + b   
        cost = (f_wb - y[i]) ** 2  
        cost_sum = cost_sum + cost  
    total_cost = (1 / (2 * m)) * cost_sum  

    return total_cost

2、cost 函数的直观理解

我们的目标是找到一个模型 f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b,其中 w w w b b b 是参数,用于准确预测给定输入 x x x 的房屋价格。

上述 cost 计算公式(1)显示,如果可以选择 w w w b b b,使得预测值 f w , b ( x ) f_{w,b}(x) fw,b(x) 与目标值 y y y 相匹配,那么 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (f_{w,b}(x^{(i)}) - y^{(i)})^2 (fw,b(x(i))y(i))2 项将为零,cost 将被最小化。

在之前的博客中,我们已经确定 b = 100 b=100 b=100 是一个最优解,所以让我们将 b b b 设为 100,并专注于 w w w

plt_intuition(x_train,y_train)

在这里插入图片描述

从图中可以就看出:

  • 当 𝑤=200 时,cost 被最小化,这与之前博客的结果相匹配。
  • 因为在 cost 计算公式中,目标值与预测值之间的差异被平方,所以当 𝑤 太大或太小时,cost 会迅速增加。
  • 使用通过最小化 cost 选择的 𝑤 和 𝑏 值得到的直线与数据完美拟合。

3、cost 可视化

我们可以通过绘制3D图或使用等高线图来观察 cost 如何随着同时改变 wb 而变化。

首先,定义更大的数据集

x_train = np.array([1.0, 1.7, 2.0, 2.5, 3.0, 3.2])
y_train = np.array([250, 300, 480,  430,   630, 730,])
plt.close('all') 
fig, ax, dyn_items = plt_stationary(x_train, y_train)
updater = plt_update_onclick(fig, ax, x_train, y_train, dyn_items)

在这里插入图片描述
在这里插入图片描述

注意,因为我们的训练样例不在一条直线上,所以最小化 cost 不是0。

cost 函数对损失进行平方的事实确保了“误差曲面”呈现凸形,就像一个碗一样。它总会有一个通过在所有维度上追随梯度可以到达的最小值点。在之前的图中,由于 w w w b b b 维度的尺度不同,这很难被察觉。下图中的 w w w b b b 是对称的。

soup_bowl()

在这里插入图片描述

总结

  • cost 计算公式提供了衡量预测与训练数据匹配程度的指标。
  • 最小化 cost 可以提供参数 w w w b b b 的最优值。

附录

lab_utils_uni.py 源码:

""" 
lab_utils_uni.py
    routines used in Course 1, Week2, labs1-3 dealing with single variables (univariate)
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from matplotlib.gridspec import GridSpec
from matplotlib.colors import LinearSegmentedColormap
from ipywidgets import interact
from lab_utils_common import compute_cost
from lab_utils_common import dlblue, dlorange, dldarkred, dlmagenta, dlpurple, dlcolors

plt.style.use('./deeplearning.mplstyle')
n_bin = 5
dlcm = LinearSegmentedColormap.from_list(
        'dl_map', dlcolors, N=n_bin)

##########################################################
# Plotting Routines
##########################################################

def plt_house_x(X, y,f_wb=None, ax=None):
    ''' plot house with aXis '''
    if not ax:
        fig, ax = plt.subplots(1,1)
    ax.scatter(X, y, marker='x', c='r', label="Actual Value")

    ax.set_title("Housing Prices")
    ax.set_ylabel('Price (in 1000s of dollars)')
    ax.set_xlabel(f'Size (1000 sqft)')
    if f_wb is not None:
        ax.plot(X, f_wb,  c=dlblue, label="Our Prediction")
    ax.legend()


def mk_cost_lines(x,y,w,b, ax):
    ''' makes vertical cost lines'''
    cstr = "cost = (1/m)*("
    ctot = 0
    label = 'cost for point'
    addedbreak = False
    for p in zip(x,y):
        f_wb_p = w*p[0]+b
        c_p = ((f_wb_p - p[1])**2)/2
        c_p_txt = c_p
        ax.vlines(p[0], p[1],f_wb_p, lw=3, color=dlpurple, ls='dotted', label=label)
        label='' #just one
        cxy = [p[0], p[1] + (f_wb_p-p[1])/2]
        ax.annotate(f'{c_p_txt:0.0f}', xy=cxy, xycoords='data',color=dlpurple,
            xytext=(5, 0), textcoords='offset points')
        cstr += f"{c_p_txt:0.0f} +"
        if len(cstr) > 38 and addedbreak is False:
            cstr += "\n"
            addedbreak = True
        ctot += c_p
    ctot = ctot/(len(x))
    cstr = cstr[:-1] + f") = {ctot:0.0f}"
    ax.text(0.15,0.02,cstr, transform=ax.transAxes, color=dlpurple)

##########
# Cost lab
##########


def plt_intuition(x_train, y_train):

    w_range = np.array([200-200,200+200])
    tmp_b = 100

    w_array = np.arange(*w_range, 5)
    cost = np.zeros_like(w_array)
    for i in range(len(w_array)):
        tmp_w = w_array[i]
        cost[i] = compute_cost(x_train, y_train, tmp_w, tmp_b)

    @interact(w=(*w_range,10),continuous_update=False)
    def func( w=150):
        f_wb = np.dot(x_train, w) + tmp_b

        fig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4))
        fig.canvas.toolbar_position = 'bottom'

        mk_cost_lines(x_train, y_train, w, tmp_b, ax[0])
        plt_house_x(x_train, y_train, f_wb=f_wb, ax=ax[0])

        ax[1].plot(w_array, cost)
        cur_cost = compute_cost(x_train, y_train, w, tmp_b)
        ax[1].scatter(w,cur_cost, s=100, color=dldarkred, zorder= 10, label= f"cost at w={w}")
        ax[1].hlines(cur_cost, ax[1].get_xlim()[0],w, lw=4, color=dlpurple, ls='dotted')
        ax[1].vlines(w, ax[1].get_ylim()[0],cur_cost, lw=4, color=dlpurple, ls='dotted')
        ax[1].set_title("Cost vs. w, (b fixed at 100)")
        ax[1].set_ylabel('Cost')
        ax[1].set_xlabel('w')
        ax[1].legend(loc='upper center')
        fig.suptitle(f"Minimize Cost: Current Cost = {cur_cost:0.0f}", fontsize=12)
        plt.show()

# this is the 2D cost curve with interactive slider
def plt_stationary(x_train, y_train):
    # setup figure
    fig = plt.figure( figsize=(9,8))
    #fig = plt.figure(constrained_layout=True,  figsize=(12,10))
    fig.set_facecolor('#ffffff') #white
    fig.canvas.toolbar_position = 'top'
    #gs = GridSpec(2, 2, figure=fig, wspace = 0.01)
    gs = GridSpec(2, 2, figure=fig)
    ax0 = fig.add_subplot(gs[0, 0])
    ax1 = fig.add_subplot(gs[0, 1])
    ax2 = fig.add_subplot(gs[1, :],  projection='3d')
    ax = np.array([ax0,ax1,ax2])

    #setup useful ranges and common linspaces
    w_range = np.array([200-300.,200+300])
    b_range = np.array([50-300., 50+300])
    b_space  = np.linspace(*b_range, 100)
    w_space  = np.linspace(*w_range, 100)

    # get cost for w,b ranges for contour and 3D
    tmp_b,tmp_w = np.meshgrid(b_space,w_space)
    z=np.zeros_like(tmp_b)
    for i in range(tmp_w.shape[0]):
        for j in range(tmp_w.shape[1]):
            z[i,j] = compute_cost(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )
            if z[i,j] == 0: z[i,j] = 1e-6

    w0=200;b=-100    #initial point
    ### plot model w cost ###
    f_wb = np.dot(x_train,w0) + b
    mk_cost_lines(x_train,y_train,w0,b,ax[0])
    plt_house_x(x_train, y_train, f_wb=f_wb, ax=ax[0])

    ### plot contour ###
    CS = ax[1].contour(tmp_w, tmp_b, np.log(z),levels=12, linewidths=2, alpha=0.7,colors=dlcolors)
    ax[1].set_title('Cost(w,b)')
    ax[1].set_xlabel('w', fontsize=10)
    ax[1].set_ylabel('b', fontsize=10)
    ax[1].set_xlim(w_range) ; ax[1].set_ylim(b_range)
    cscat  = ax[1].scatter(w0,b, s=100, color=dlblue, zorder= 10, label="cost with \ncurrent w,b")
    chline = ax[1].hlines(b, ax[1].get_xlim()[0],w0, lw=4, color=dlpurple, ls='dotted')
    cvline = ax[1].vlines(w0, ax[1].get_ylim()[0],b, lw=4, color=dlpurple, ls='dotted')
    ax[1].text(0.5,0.95,"Click to choose w,b",  bbox=dict(facecolor='white', ec = 'black'), fontsize = 10,
                transform=ax[1].transAxes, verticalalignment = 'center', horizontalalignment= 'center')

    #Surface plot of the cost function J(w,b)
    ax[2].plot_surface(tmp_w, tmp_b, z,  cmap = dlcm, alpha=0.3, antialiased=True)
    ax[2].plot_wireframe(tmp_w, tmp_b, z, color='k', alpha=0.1)
    plt.xlabel("$w$")
    plt.ylabel("$b$")
    ax[2].zaxis.set_rotate_label(False)
    ax[2].xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax[2].yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax[2].zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax[2].set_zlabel("J(w, b)\n\n", rotation=90)
    plt.title("Cost(w,b) \n [You can rotate this figure]", size=12)
    ax[2].view_init(30, -120)

    return fig,ax, [cscat, chline, cvline]


#https://matplotlib.org/stable/users/event_handling.html
class plt_update_onclick:
    def __init__(self, fig, ax, x_train,y_train, dyn_items):
        self.fig = fig
        self.ax = ax
        self.x_train = x_train
        self.y_train = y_train
        self.dyn_items = dyn_items
        self.cid = fig.canvas.mpl_connect('button_press_event', self)

    def __call__(self, event):
        if event.inaxes == self.ax[1]:
            ws = event.xdata
            bs = event.ydata
            cst = compute_cost(self.x_train, self.y_train, ws, bs)

            # clear and redraw line plot
            self.ax[0].clear()
            f_wb = np.dot(self.x_train,ws) + bs
            mk_cost_lines(self.x_train,self.y_train,ws,bs,self.ax[0])
            plt_house_x(self.x_train, self.y_train, f_wb=f_wb, ax=self.ax[0])

            # remove lines and re-add on countour plot and 3d plot
            for artist in self.dyn_items:
                artist.remove()

            a = self.ax[1].scatter(ws,bs, s=100, color=dlblue, zorder= 10, label="cost with \ncurrent w,b")
            b = self.ax[1].hlines(bs, self.ax[1].get_xlim()[0],ws, lw=4, color=dlpurple, ls='dotted')
            c = self.ax[1].vlines(ws, self.ax[1].get_ylim()[0],bs, lw=4, color=dlpurple, ls='dotted')
            d = self.ax[1].annotate(f"Cost: {cst:.0f}", xy= (ws, bs), xytext = (4,4), textcoords = 'offset points',
                               bbox=dict(facecolor='white'), size = 10)

            #Add point in 3D surface plot
            e = self.ax[2].scatter3D(ws, bs,cst , marker='X', s=100)

            self.dyn_items = [a,b,c,d,e]
            self.fig.canvas.draw()


def soup_bowl():
    """ Create figure and plot with a 3D projection"""
    fig = plt.figure(figsize=(8,8))

    #Plot configuration
    ax = fig.add_subplot(111, projection='3d')
    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_rotate_label(False)
    ax.view_init(45, -120)

    #Useful linearspaces to give values to the parameters w and b
    w = np.linspace(-20, 20, 100)
    b = np.linspace(-20, 20, 100)

    #Get the z value for a bowl-shaped cost function
    z=np.zeros((len(w), len(b)))
    j=0
    for x in w:
        i=0
        for y in b:
            z[i,j] = x**2 + y**2
            i+=1
        j+=1

    #Meshgrid used for plotting 3D functions
    W, B = np.meshgrid(w, b)

    #Create the 3D surface plot of the bowl-shaped cost function
    ax.plot_surface(W, B, z, cmap = "Spectral_r", alpha=0.7, antialiased=False)
    ax.plot_wireframe(W, B, z, color='k', alpha=0.1)
    ax.set_xlabel("$w$")
    ax.set_ylabel("$b$")
    ax.set_zlabel("$J(w,b)$", rotation=90)
    ax.set_title("$J(w,b)$\n [You can rotate this figure]", size=15)

    plt.show()

def inbounds(a,b,xlim,ylim):
    xlow,xhigh = xlim
    ylow,yhigh = ylim
    ax, ay = a
    bx, by = b
    if (ax > xlow and ax < xhigh) and (bx > xlow and bx < xhigh) \
        and (ay > ylow and ay < yhigh) and (by > ylow and by < yhigh):
        return True
    return False

def plt_contour_wgrad(x, y, hist, ax, w_range=[-100, 500, 5], b_range=[-500, 500, 5],
                contours = [0.1,50,1000,5000,10000,25000,50000],
                      resolution=5, w_final=200, b_final=100,step=10 ):
    b0,w0 = np.meshgrid(np.arange(*b_range),np.arange(*w_range))
    z=np.zeros_like(b0)
    for i in range(w0.shape[0]):
        for j in range(w0.shape[1]):
            z[i][j] = compute_cost(x, y, w0[i][j], b0[i][j] )

    CS = ax.contour(w0, b0, z, contours, linewidths=2,
                   colors=[dlblue, dlorange, dldarkred, dlmagenta, dlpurple])
    ax.clabel(CS, inline=1, fmt='%1.0f', fontsize=10)
    ax.set_xlabel("w");  ax.set_ylabel("b")
    ax.set_title('Contour plot of cost J(w,b), vs b,w with path of gradient descent')
    w = w_final; b=b_final
    ax.hlines(b, ax.get_xlim()[0],w, lw=2, color=dlpurple, ls='dotted')
    ax.vlines(w, ax.get_ylim()[0],b, lw=2, color=dlpurple, ls='dotted')

    base = hist[0]
    for point in hist[0::step]:
        edist = np.sqrt((base[0] - point[0])**2 + (base[1] - point[1])**2)
        if(edist > resolution or point==hist[-1]):
            if inbounds(point,base, ax.get_xlim(),ax.get_ylim()):
                plt.annotate('', xy=point, xytext=base,xycoords='data',
                         arrowprops={'arrowstyle': '->', 'color': 'r', 'lw': 3},
                         va='center', ha='center')
            base=point
    return


def plt_divergence(p_hist, J_hist, x_train,y_train):

    x=np.zeros(len(p_hist))
    y=np.zeros(len(p_hist))
    v=np.zeros(len(p_hist))
    for i in range(len(p_hist)):
        x[i] = p_hist[i][0]
        y[i] = p_hist[i][1]
        v[i] = J_hist[i]

    fig = plt.figure(figsize=(12,5))
    plt.subplots_adjust( wspace=0 )
    gs = fig.add_gridspec(1, 5)
    fig.suptitle(f"Cost escalates when learning rate is too large")
    #===============
    #  First subplot
    #===============
    ax = fig.add_subplot(gs[:2], )

    # Print w vs cost to see minimum
    fix_b = 100
    w_array = np.arange(-70000, 70000, 1000)
    cost = np.zeros_like(w_array)

    for i in range(len(w_array)):
        tmp_w = w_array[i]
        cost[i] = compute_cost(x_train, y_train, tmp_w, fix_b)

    ax.plot(w_array, cost)
    ax.plot(x,v, c=dlmagenta)
    ax.set_title("Cost vs w, b set to 100")
    ax.set_ylabel('Cost')
    ax.set_xlabel('w')
    ax.xaxis.set_major_locator(MaxNLocator(2))

    #===============
    # Second Subplot
    #===============

    tmp_b,tmp_w = np.meshgrid(np.arange(-35000, 35000, 500),np.arange(-70000, 70000, 500))
    z=np.zeros_like(tmp_b)
    for i in range(tmp_w.shape[0]):
        for j in range(tmp_w.shape[1]):
            z[i][j] = compute_cost(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )

    ax = fig.add_subplot(gs[2:], projection='3d')
    ax.plot_surface(tmp_w, tmp_b, z,  alpha=0.3, color=dlblue)
    ax.xaxis.set_major_locator(MaxNLocator(2))
    ax.yaxis.set_major_locator(MaxNLocator(2))

    ax.set_xlabel('w', fontsize=16)
    ax.set_ylabel('b', fontsize=16)
    ax.set_zlabel('\ncost', fontsize=16)
    plt.title('Cost vs (b, w)')
    # Customize the view angle
    ax.view_init(elev=20., azim=-65)
    ax.plot(x, y, v,c=dlmagenta)

    return

# draw derivative line
# y = m*(x - x1) + y1
def add_line(dj_dx, x1, y1, d, ax):
    x = np.linspace(x1-d, x1+d,50)
    y = dj_dx*(x - x1) + y1
    ax.scatter(x1, y1, color=dlblue, s=50)
    ax.plot(x, y, '--', c=dldarkred,zorder=10, linewidth = 1)
    xoff = 30 if x1 == 200 else 10
    ax.annotate(r"$\frac{\partial J}{\partial w}$ =%d" % dj_dx, fontsize=14,
                xy=(x1, y1), xycoords='data',
            xytext=(xoff, 10), textcoords='offset points',
            arrowprops=dict(arrowstyle="->"),
            horizontalalignment='left', verticalalignment='top')

def plt_gradients(x_train,y_train, f_compute_cost, f_compute_gradient):
    #===============
    #  First subplot
    #===============
    fig,ax = plt.subplots(1,2,figsize=(12,4))

    # Print w vs cost to see minimum
    fix_b = 100
    w_array = np.linspace(-100, 500, 50)
    w_array = np.linspace(0, 400, 50)
    cost = np.zeros_like(w_array)

    for i in range(len(w_array)):
        tmp_w = w_array[i]
        cost[i] = f_compute_cost(x_train, y_train, tmp_w, fix_b)
    ax[0].plot(w_array, cost,linewidth=1)
    ax[0].set_title("Cost vs w, with gradient; b set to 100")
    ax[0].set_ylabel('Cost')
    ax[0].set_xlabel('w')

    # plot lines for fixed b=100
    for tmp_w in [100,200,300]:
        fix_b = 100
        dj_dw,dj_db = f_compute_gradient(x_train, y_train, tmp_w, fix_b )
        j = f_compute_cost(x_train, y_train, tmp_w, fix_b)
        add_line(dj_dw, tmp_w, j, 30, ax[0])

    #===============
    # Second Subplot
    #===============

    tmp_b,tmp_w = np.meshgrid(np.linspace(-200, 200, 10), np.linspace(-100, 600, 10))
    U = np.zeros_like(tmp_w)
    V = np.zeros_like(tmp_b)
    for i in range(tmp_w.shape[0]):
        for j in range(tmp_w.shape[1]):
            U[i][j], V[i][j] = f_compute_gradient(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )
    X = tmp_w
    Y = tmp_b
    n=-2
    color_array = np.sqrt(((V-n)/2)**2 + ((U-n)/2)**2)

    ax[1].set_title('Gradient shown in quiver plot')
    Q = ax[1].quiver(X, Y, U, V, color_array, units='width', )
    ax[1].quiverkey(Q, 0.9, 0.9, 2, r'$2 \frac{m}{s}$', labelpos='E',coordinates='figure')
    ax[1].set_xlabel("w"); ax[1].set_ylabel("b")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/811388.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数字IC设计】VCS仿真DesignWare IP

DesignWare介绍 DesignWare是SoC/ASIC设计者最钟爱的设计IP库和验证IP库。它包括一个独立于工艺的、经验证的、可综合的虚拟微架构的元件集合&#xff0c;包括逻辑、算术、存储和专用元件系列&#xff0c;超过140个模块。DesignWare和 Design Compiler的结合可以极大地改进综合…

c++ 给无名形参提供默认值

如上图&#xff0c;若函数的形参不在函数体里使用&#xff0c;可以不提供形参名&#xff0c;而且可以给此形参提供默认值。也能编译通过。 在看vs2019上的源码时&#xff0c;也出现了这种写法。应用SFINAE&#xff08;substitute false is not an error&#xff09;原则&#x…

Go Ethereum源码学习笔记 001 Geth Start

Go Ethereum源码学习笔记 前言[Chapter_001] 万物的起点: Geth Start什么是 geth&#xff1f;go-ethereum Codebase 结构 Geth Start前奏: Geth Consolegeth 节点是如何启动的NodeNode的关闭 Ethereum Backend附录 前言 首先读者需要具备Go语言基础&#xff0c;至少要通关菜鸟…

周末放松大作战:优化生活质量的秘密武器

博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客&#x1f466;&#x1f3fb; 《java 面试题大全》 &#x1f369;惟余辈才疏学浅&#xff0c;临摹之作或有不妥之处&#xff0c;还请读者海涵指正。☕&#x1f36d; 《MYSQL从入门到精通》数据库是开发者必会基础之…

C++代码质量提升指南-工具篇

提高代码质量的方法&#xff1a; 使用代码规范&#xff1a;代码规范是指对代码的编写风格和格式进行规范的规则。使用代码规范可以提高代码的可读性、可维护性和可扩展性。进行单元测试&#xff1a;单元测试是一种用于验证代码单元是否正确运行的测试方法。进行单元测试可以帮…

C++ ——STL容器【list】模拟实现

代码仓库&#xff1a; list模拟实现 list源码 数据结构——双向链表 文章目录 &#x1f347;1. 节点结构体&#x1f348;2. list成员&#x1f349;3. 迭代器模板&#x1f34a;4. 迭代器&#x1f34b;5. 插入删除操作&#x1f34c;5.1 insert & erase&#x1f34c;5.2 push_…

Python实现GA遗传算法优化循环神经网络回归模型(LSTM回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;最早是由美国的 John holland于20世…

Zabbix分布式监控Web监控

目录 1 概述2 配置 Web 场景2.1 配置步骤2.2 显示 3 Web 场景步骤3.1 创建新的 Web 场景。3.2 定义场景的步骤3.3 保存配置完成的Web 监控场景。 4 Zabbix-Get的使用 1 概述 您可以使用 Zabbix 对多个网站进行可用性方面监控&#xff1a; 要使用 Web 监控&#xff0c;您需要定…

【GitOps系列】监听镜像版本变化触发 GitOps工作流

文章目录 前言工作流总览安装和配置 ArgoCD Image Updater创建 Image Pull Secret&#xff08;可选&#xff09;创建 Helm Chart 仓库创建 ArgoCD Application删除旧应用&#xff08;可选&#xff09;配置仓库访问权限创建 ArgoCD 应用 体验 GitOps 工作流总结 前言 在【GitOps…

AQS之ReentrantLock源码详解

一、管程 管程&#xff1a;指的是管理共享变量以及对共享变量的操作过程&#xff0c;让它们支持并发 互斥&#xff1a;同一时刻只允许一个线程访问共享资源 同步&#xff1a;线程之间如何通信、协作 MESA模型 在管程的发展史上&#xff0c;先后出现过三种不同的管程模型&a…

Xamarin.Android实现加载中的效果

目录 1、说明2、代码如下2.1 图1的代码2.1.1、创建一个Activity或者Fragment&#xff0c;如下&#xff1a;2.1.2、创建Layout2.1.3、如何使用 2.2 图2的代码 4、其他补充4.1 C#与Java中的匿名类4.2 、其他知识点 5、参考资料 1、说明 在实际使用过程中&#xff0c;常常会用到点…

【142. 环形链表 II】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0…

TCP三次握手报文代码实现

声明 看了一个博主写的文章 但是因为自己电脑环境的问题最终没有运行 本文仅对思路进行一个讲解 大家就看一下这个思路就好 不好意思大家测试环境 window10系统 哈工大的泰山服务器 检验和部分 原理 首先让检验和部分为0(二进制) 然后将左边的部分依次相加 然后将地址分成如图…

如何用arduino uno主板播放自己想要的曲子。《我爱你中国》单片机版本。

目录 一.效果展示 二.基本原理 三.电路图 四.代码 一.效果展示 arduino播放《我爱你中国》 二.基本原理 利用arduino uno单片机实现对蜂鸣器振动频率的调节&#xff0c;基于PWM控制系统通过代码实现控制。 三.电路图 四.代码 //main.uno #define Buzzer 2int PotBuffer …

PHP使用Redis实战实录4:单例模式和面向过程操作redis的语法

PHP使用Redis实战实录系列 PHP使用Redis实战实录1&#xff1a;宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案PHP使用Redis实战实录2&#xff1a;Redis扩展方法和PHP连接Redis的多种方案PHP使用Redis实战实录3&#xff1a;数据类型比较、大小限制和性能扩展PHP使用Re…

第六章 HL7 架构和可用工具 - 定义新的消息类型和结构类型

文章目录 第六章 HL7 架构和可用工具 - 定义新的消息类型和结构类型编辑数据结构和代码表 第六章 HL7 架构和可用工具 - 定义新的消息类型和结构类型 消息类型标识消息并与 HL7 MSH:9 字段中的值匹配。定义消息类型时&#xff0c;指定发送消息结构类型&#xff08;可能与消息类…

OpenMP

官方文档&#xff1a;OpenMP | LLNL HPC Tutorials OpenMP总览 统一内存访问&#xff1a;OpenMP、Pthreads 非统一内存访问&#xff1a;MPI OpenMP与Pthread OpenMP原理 串行区到达并行区后会派生多个线程&#xff0c;并行区代码执行完后进行线程合并&#xff0c;剩下主线程 编…

SqueezeLM 的想法,压缩输入句子潜变量,生成下一句子

又搞了一段时间。还是感觉LongNet那种空洞注意力做编码器有搞头。 RetNet等AFT方法&#xff0c;直接生成太长的句子感觉有点难度&#xff0c;不过可以一句句生成&#xff0c;每次生成短句&#xff0c;这样感觉比较合适。 启发 受 MemroyTransformer 和 GLM 启发 想了一个类似…

大会第二日,精彩不停!LiveVideoStackCon 2023 上海站

历时四个月的精心筹备&#xff0c;LiveVideoStackCon 组委会与联席主席、出品人及评审团通力合作&#xff0c;90余位讲师对演讲内容的反复琢磨……只为呈现最专业的音视频技术盛会。 今日&#xff0c;以「沉浸新视界」为主题的LiveVideoStackCon 2023 上海站 音视频技术大会继续…

ACL原理

ACL原理 ACL是一种用于控制网络设备访问权限的技术&#xff0c;可以通过配置ACL来限制特定用户、应用程序或网络设备对网络资源的访问。 1、ACL&#xff08;Access Control List&#xff09; 2、ACL是一种包过滤技术。 3、ACL基于IP包头的IP地址、四层TCP/UDP头部的端口号、…