Python实现GA遗传算法优化循环神经网络回归模型(LSTM回归算法)项目实战

news2025/1/12 6:21:23

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。遗传算法已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

本项目通过GA遗传算法优化循环神经网络回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

 关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

 

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

 

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

 

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建GA遗传算法优化LSTM回归模型

主要使用GA遗传算法优化LSTM回归算法,用于目标回归。

6.1 GA遗传算法寻找最优参数值   

最优参数值:

 6.2 最优参数值构建模型

 6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

 6.5 最优参数模型训练集测试集损失曲线图

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

从上表可以看出,R方0.9898,为模型效果良好。

关键代码如下:

 7.2 真实值与预测值对比图

 从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

8.结论与展望

综上所述,本文采用了GA遗传算法寻找循环神经网络LSTM算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 初始化种群、初始解
Sol = np.zeros((N_pop, d))  # 初始化位置
Fitness = np.zeros((N_pop, 1))  # 初始化适用度
for i in range(N_pop):  # 迭代种群
    Sol[i] = np.random.uniform(Lower_bound, Upper_bound, (1, d))  # 生成随机数
    Fitness[i] = objfun(Sol[i])  # 适用度
 
 
 
 
# ******************************************************************************
 
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ
 
# 提取码:thgk
 
# ******************************************************************************
 
 
# y变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df['y']  # 过滤出y变量的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
 

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/811363.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Zabbix分布式监控Web监控

目录 1 概述2 配置 Web 场景2.1 配置步骤2.2 显示 3 Web 场景步骤3.1 创建新的 Web 场景。3.2 定义场景的步骤3.3 保存配置完成的Web 监控场景。 4 Zabbix-Get的使用 1 概述 您可以使用 Zabbix 对多个网站进行可用性方面监控: 要使用 Web 监控,您需要定…

【GitOps系列】监听镜像版本变化触发 GitOps工作流

文章目录 前言工作流总览安装和配置 ArgoCD Image Updater创建 Image Pull Secret(可选)创建 Helm Chart 仓库创建 ArgoCD Application删除旧应用(可选)配置仓库访问权限创建 ArgoCD 应用 体验 GitOps 工作流总结 前言 在【GitOps…

AQS之ReentrantLock源码详解

一、管程 管程:指的是管理共享变量以及对共享变量的操作过程,让它们支持并发 互斥:同一时刻只允许一个线程访问共享资源 同步:线程之间如何通信、协作 MESA模型 在管程的发展史上,先后出现过三种不同的管程模型&a…

Xamarin.Android实现加载中的效果

目录 1、说明2、代码如下2.1 图1的代码2.1.1、创建一个Activity或者Fragment,如下:2.1.2、创建Layout2.1.3、如何使用 2.2 图2的代码 4、其他补充4.1 C#与Java中的匿名类4.2 、其他知识点 5、参考资料 1、说明 在实际使用过程中,常常会用到点…

【142. 环形链表 II】

来源:力扣(LeetCode) 描述: 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达&#xff0…

TCP三次握手报文代码实现

声明 看了一个博主写的文章 但是因为自己电脑环境的问题最终没有运行 本文仅对思路进行一个讲解 大家就看一下这个思路就好 不好意思大家测试环境 window10系统 哈工大的泰山服务器 检验和部分 原理 首先让检验和部分为0(二进制) 然后将左边的部分依次相加 然后将地址分成如图…

如何用arduino uno主板播放自己想要的曲子。《我爱你中国》单片机版本。

目录 一.效果展示 二.基本原理 三.电路图 四.代码 一.效果展示 arduino播放《我爱你中国》 二.基本原理 利用arduino uno单片机实现对蜂鸣器振动频率的调节,基于PWM控制系统通过代码实现控制。 三.电路图 四.代码 //main.uno #define Buzzer 2int PotBuffer …

PHP使用Redis实战实录4:单例模式和面向过程操作redis的语法

PHP使用Redis实战实录系列 PHP使用Redis实战实录1:宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案PHP使用Redis实战实录2:Redis扩展方法和PHP连接Redis的多种方案PHP使用Redis实战实录3:数据类型比较、大小限制和性能扩展PHP使用Re…

第六章 HL7 架构和可用工具 - 定义新的消息类型和结构类型

文章目录 第六章 HL7 架构和可用工具 - 定义新的消息类型和结构类型编辑数据结构和代码表 第六章 HL7 架构和可用工具 - 定义新的消息类型和结构类型 消息类型标识消息并与 HL7 MSH:9 字段中的值匹配。定义消息类型时,指定发送消息结构类型(可能与消息类…

OpenMP

官方文档:OpenMP | LLNL HPC Tutorials OpenMP总览 统一内存访问:OpenMP、Pthreads 非统一内存访问:MPI OpenMP与Pthread OpenMP原理 串行区到达并行区后会派生多个线程,并行区代码执行完后进行线程合并,剩下主线程 编…

SqueezeLM 的想法,压缩输入句子潜变量,生成下一句子

又搞了一段时间。还是感觉LongNet那种空洞注意力做编码器有搞头。 RetNet等AFT方法,直接生成太长的句子感觉有点难度,不过可以一句句生成,每次生成短句,这样感觉比较合适。 启发 受 MemroyTransformer 和 GLM 启发 想了一个类似…

大会第二日,精彩不停!LiveVideoStackCon 2023 上海站

历时四个月的精心筹备,LiveVideoStackCon 组委会与联席主席、出品人及评审团通力合作,90余位讲师对演讲内容的反复琢磨……只为呈现最专业的音视频技术盛会。 今日,以「沉浸新视界」为主题的LiveVideoStackCon 2023 上海站 音视频技术大会继续…

ACL原理

ACL原理 ACL是一种用于控制网络设备访问权限的技术,可以通过配置ACL来限制特定用户、应用程序或网络设备对网络资源的访问。 1、ACL(Access Control List) 2、ACL是一种包过滤技术。 3、ACL基于IP包头的IP地址、四层TCP/UDP头部的端口号、…

Flowable-服务-微服务任务

目录 定义图形标记XML内容界面操作 定义 Sc 任务不是 BPMN 2.0 规范定义的官方任务,在 Flowable 中,Sc 任务是作为一种特殊的服务 任务来实现的,主要调用springcloud的微服务使用。 图形标记 由于 Sc 任务不是 BPMN 2.0 规范的“官方”任务…

WebAgent-基于大型语言模型的代理程序

大型语言模型(LLM)可以解决多种自然语言任务,例如算术、常识、逻辑推理、问答、文本生成、交互式决策任务。最近,LLM在自主网络导航方面也取得了巨大成功,代理程序助HTML理解和多步推理的能力,通过控制计算…

【Linux多线程】详解线程控制、线程分离

线程互斥与同步 👸 理解线程🤴pthead_t🥷关于线程🦸‍♀️线程控制POSIX线程库线程ID及进程地址空间布局 🦸线程分离__thread关键字🦸‍♂️pthread_detach函数🦹‍♀️pthread_exit函数&#x…

[JavaWeb]SQL介绍-DDL-DML

SQL介绍-DDL-DML 一.SQL简介1.简介2.SQL通用语法3.SQL语言的分类 二.DDL-操作数据库与表1.DDL操作数据库2.DDL操作表①.查询表(Retrieve)②.创建表(Create)③.修改表(Update)④.删除表(Delete) 三.Navicat的安装与使用四.DML-操作表数据1.添加(Insert)2.修改(Update)3.删除(Del…

【C++】反向迭代器的模拟实现通用(可运用于vector,string,list等模拟容器)

文章目录 前言一、反向迭代器封装(reverseiterator)1.构造函数1解引用操作.3.->运算符重载4.前置,后置5.前置--,后置--6.不等号运算符重载7.完整代码 二、rbegin()以及rend()1.rb…

[nlp] TF-IDF算法介绍

(1)TF是词频(Term Frequency) 词频是文档中词出现的概率。 (2) IDF是逆向文件频率(Inverse Document Frequency) 包含词条的文档越少,IDF越大。

01-导数的定义_左导数和右导数

微积分 导数的定义 左导数与右导数、可导函数 趋近于 0 有两个方向,从左边趋向于 0 是左导数,反之是右导数 下面的绝对值函数的左导数和右导数不相同,一个-1 一个1,0 位置不可导 f(x)|x|, 导数可以理解为某点的斜率…