【机器学习】Multiple Variable Linear Regression

news2024/9/24 3:18:49

Multiple Variable Linear Regression

    • 1、问题描述
      • 1.1 包含样例的X矩阵
      • 1.2 参数向量 w, b
    • 2、多变量的模型预测
      • 2.1 逐元素进行预测
      • 2.2 向量点积进行预测
    • 3、多变量线性回归模型计算损失
    • 4、多变量线性回归模型梯度下降
      • 4.1 计算梯度
      • 4.2梯度下降

首先,导入所需的库

import copy, math
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
np.set_printoptions(precision=2)  # reduced display precision on numpy arrays

1、问题描述

使用房价预测的示例来构建线性回归模型。训练数据集包含三个样本,每个样本有四个特征(面积、卧室数、楼层数和年龄),如下表所示。这里的面积以平方英尺(sqft)为单位。

Size (sqft)Number of BedroomsNumber of floorsAge of HomePrice (1000s dollars)
21045145460
14163240232
8522135178

使用这些值构建线性回归模型,从而可以预测其他房屋的价格。例如,给定一个1200平方英尺、3个卧室、1层楼、40岁的房屋,可以用模型来预测其价格。

根据表格数据创建 X_trainy_train 变量。

X_train = np.array([[2104, 5, 1, 45], [1416, 3, 2, 40], [852, 2, 1, 35]])
y_train = np.array([460, 232, 178])

1.1 包含样例的X矩阵

与上面的表格类似,样例被存储在一个 NumPy 矩阵X_train 中。矩阵中的每一行表示一个样例。当有 m m m 个训练样例,每个样例有 n n n 个特征时, X \mathbf{X} X 是一个维度为 ( m m m, n n n) 的矩阵(m 行,n 列)。

X = ( x 0 ( 0 ) x 1 ( 0 ) ⋯ x n − 1 ( 0 ) x 0 ( 1 ) x 1 ( 1 ) ⋯ x n − 1 ( 1 ) ⋯ x 0 ( m − 1 ) x 1 ( m − 1 ) ⋯ x n − 1 ( m − 1 ) ) \mathbf{X} = \begin{pmatrix} x^{(0)}_0 & x^{(0)}_1 & \cdots & x^{(0)}_{n-1} \\ x^{(1)}_0 & x^{(1)}_1 & \cdots & x^{(1)}_{n-1} \\ \cdots \\ x^{(m-1)}_0 & x^{(m-1)}_1 & \cdots & x^{(m-1)}_{n-1} \end{pmatrix} X= x0(0)x0(1)x0(m1)x1(0)x1(1)x1(m1)xn1(0)xn1(1)xn1(m1)

notation:

  • x ( i ) \mathbf{x}^{(i)} x(i) 是包含第 i 个样例的向量。 x ( i ) = ( x 0 ( i ) , x 1 ( i ) , ⋯   , x n − 1 ( i ) ) \mathbf{x}^{(i)}= (x^{(i)}_0, x^{(i)}_1, \cdots,x^{(i)}_{n-1}) x(i)=(x0(i),x1(i),,xn1(i))
  • x j ( i ) x^{(i)}_j xj(i) 是第 i 个样例中的第 j 个元素。圆括号中的上标表示样例编号,而下标表示元素编号。
# data is stored in numpy array/matrix
print(f"X Shape: {X_train.shape}, X Type:{type(X_train)})")
print(X_train)
print(f"y Shape: {y_train.shape}, y Type:{type(y_train)})")
print(y_train)

1.2 参数向量 w, b

  • w \mathbf{w} w 是具有 n n n 个元素的向量
    • 每个元素包含一个特征相关的参数
    • i在我们的数据集中, n = 4.
    • 将这表示为列向量

w = ( w 0 w 1 ⋯ w n − 1 ) \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \cdots\\ w_{n-1} \end{pmatrix} w= w0w1wn1

  • b b b 是一个标量参数

为了演示, w \mathbf{w} w b b b 将被加载为一些初始选定的值,这些值接近最优解。 w \mathbf{w} w 是一个一维的 NumPy 向量。

b_init = 785.1811367994083
w_init = np.array([ 0.39133535, 18.75376741, -53.36032453, -26.42131618])
print(f"w_init shape: {w_init.shape}, b_init type: {type(b_init)}")

2、多变量的模型预测

多变量的线性回归模型的预测可以表示为:
f w , b ( x ) = w 0 x 0 + w 1 x 1 + . . . + w n − 1 x n − 1 + b (1) f_{\mathbf{w},b}(\mathbf{x}) = w_0x_0 + w_1x_1 +... + w_{n-1}x_{n-1} + b \tag{1} fw,b(x)=w0x0+w1x1+...+wn1xn1+b(1)
或用向量表示:
f w , b ( x ) = w ⋅ x + b (2) f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b \tag{2} fw,b(x)=wx+b(2)
其中 ⋅ \cdot 是向量点积

2.1 逐元素进行预测

之前的预测是将一个特征值乘以一个参数,然后再加上一个偏置参数。将之前的预测直接扩展到多个特征的实现,可以通过循环遍历每个元素,在每个元素上进行乘法操作,然后在最后加上偏置参数来实现。

def predict_single_loop(x, w, b): 
    """
    single predict using linear regression
    
    Args:
      x (ndarray): Shape (n,) example with multiple features
      w (ndarray): Shape (n,) model parameters    
      b (scalar):  model parameter     
      
    Returns:
      p (scalar):  prediction
    """
    n = x.shape[0]
    p = 0
    for i in range(n):
        p_i = x[i] * w[i]  
        p = p + p_i         
    p = p + b                
    return p
# get a row from our training data
x_vec = X_train[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")

# make a prediction
f_wb = predict_single_loop(x_vec, w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")

x_vec. 是一个具有四个元素的 1-D NumPy 向量, f_wb 是一个标量。

2.2 向量点积进行预测

使用NumPy的 np.dot() 对向量进行点积操作,加快预测速度。

def predict(x, w, b): 
    """
    single predict using linear regression
    Args:
      x (ndarray): Shape (n,) example with multiple features
      w (ndarray): Shape (n,) model parameters   
      b (scalar):             model parameter 
      
    Returns:
      p (scalar):  prediction
    """
    p = np.dot(x, w) + b     
    return p    
# get a row from our training data
x_vec = X_train[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")

# make a prediction
f_wb = predict(x_vec,w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")

运行后可以看到,向量点积和元素循环的结果是相同的。

3、多变量线性回归模型计算损失

多变量线性回归的损失函数 J ( w , b ) J(\mathbf{w},b) J(w,b) 方程如下:
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (3) J(\mathbf{w},b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2 \tag{3} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2(3)
其中:
f w , b ( x ( i ) ) = w ⋅ x ( i ) + b (4) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x}^{(i)} + b \tag{4} fw,b(x(i))=wx(i)+b(4)

w \mathbf{w} w x ( i ) \mathbf{x}^{(i)} x(i) 是向量。

具体实现如下:

def compute_cost(X, y, w, b): 
    """
    compute cost
    Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
      
    Returns:
      cost (scalar): cost
    """
    m = X.shape[0]
    cost = 0.0
    for i in range(m):                                
        f_wb_i = np.dot(X[i], w) + b           #(n,)(n,) = scalar (see np.dot)
        cost = cost + (f_wb_i - y[i])**2       #scalar
    cost = cost / (2 * m)                      #scalar    
    return cost
# Compute and display cost using our pre-chosen optimal parameters. 
cost = compute_cost(X_train, y_train, w_init, b_init)
print(f'Cost at optimal w : {cost}')

4、多变量线性回归模型梯度下降

多变量线性回归的梯度下降方程如下:

repeat  until convergence:    {    w j = w j − α ∂ J ( w , b ) ∂ w j    for j = 0..n-1 b    = b − α ∂ J ( w , b ) ∂ b } \begin{align*} \text{repeat}&\text{ until convergence:} \; \lbrace \newline\; & w_j = w_j - \alpha \frac{\partial J(\mathbf{w},b)}{\partial w_j} \tag{5} \; & \text{for j = 0..n-1}\newline &b\ \ = b - \alpha \frac{\partial J(\mathbf{w},b)}{\partial b} \newline \rbrace \end{align*} repeat} until convergence:{wj=wjαwjJ(w,b)b  =bαbJ(w,b)for j = 0..n-1(5)

其中,n是特征的数量,参数 w j w_j wj, b b b, 同时更新

∂ J ( w , b ) ∂ w j = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) x j ( i ) ∂ J ( w , b ) ∂ b = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) \begin{align} \frac{\partial J(\mathbf{w},b)}{\partial w_j} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_{j}^{(i)} \tag{6} \\ \frac{\partial J(\mathbf{w},b)}{\partial b} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \tag{7} \end{align} wjJ(w,b)bJ(w,b)=m1i=0m1(fw,b(x(i))y(i))xj(i)=m1i=0m1(fw,b(x(i))y(i))(6)(7)

  • m 是训练数据集样例的个数

  • f w , b ( x ( i ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) fw,b(x(i)) 是模型的预测值, y ( i ) y^{(i)} y(i) 是目标值。

4.1 计算梯度

下面是方程(6)和(7)的实现

  • 外循环m个样例.
    • 对每个样例计算并累加 ∂ J ( w , b ) ∂ b \frac{\partial J(\mathbf{w},b)}{\partial b} bJ(w,b)
    • 内循环n个特征:
      • 对于每个 w j w_j wj计算 ∂ J ( w , b ) ∂ w j \frac{\partial J(\mathbf{w},b)}{\partial w_j} wjJ(w,b)
def compute_gradient(X, y, w, b): 
    """
    Computes the gradient for linear regression 
    Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
      
    Returns:
      dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. 
      dj_db (scalar):       The gradient of the cost w.r.t. the parameter b. 
    """
    m,n = X.shape           #(number of examples, number of features)
    dj_dw = np.zeros((n,))
    dj_db = 0.

    for i in range(m):                             
        err = (np.dot(X[i], w) + b) - y[i]   
        for j in range(n):                         
            dj_dw[j] = dj_dw[j] + err * X[i, j]    
        dj_db = dj_db + err                        
    dj_dw = dj_dw / m                                
    dj_db = dj_db / m                                
        
    return dj_db, dj_dw
#Compute and display gradient 
tmp_dj_db, tmp_dj_dw = compute_gradient(X_train, y_train, w_init, b_init)
print(f'dj_db at initial w,b: {tmp_dj_db}')
print(f'dj_dw at initial w,b: \n {tmp_dj_dw}')

4.2梯度下降

下面是方程(5)的实现

def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters): 
    """
    Performs batch gradient descent to learn theta. Updates theta by taking 
    num_iters gradient steps with learning rate alpha
    
    Args:
      X (ndarray (m,n))   : Data, m examples with n features
      y (ndarray (m,))    : target values
      w_in (ndarray (n,)) : initial model parameters  
      b_in (scalar)       : initial model parameter
      cost_function       : function to compute cost
      gradient_function   : function to compute the gradient
      alpha (float)       : Learning rate
      num_iters (int)     : number of iterations to run gradient descent
      
    Returns:
      w (ndarray (n,)) : Updated values of parameters 
      b (scalar)       : Updated value of parameter 
      """
    
    # An array to store cost J and w's at each iteration primarily for graphing later
    J_history = []
    w = copy.deepcopy(w_in)  #avoid modifying global w within function
    b = b_in
    
    for i in range(num_iters):

        # Calculate the gradient and update the parameters
        dj_db,dj_dw = gradient_function(X, y, w, b)   ##None

        # Update Parameters using w, b, alpha and gradient
        w = w - alpha * dj_dw               ##None
        b = b - alpha * dj_db               ##None
      
        # Save cost J at each iteration
        if i<100000:      # prevent resource exhaustion 
            J_history.append( cost_function(X, y, w, b))

        # Print cost every at intervals 10 times or as many iterations if < 10
        if i% math.ceil(num_iters / 10) == 0:
            print(f"Iteration {i:4d}: Cost {J_history[-1]:8.2f}   ")
        
    return w, b, J_history #return final w,b and J history for graphing

测试一下

# initialize parameters
initial_w = np.zeros_like(w_init)
initial_b = 0.
# some gradient descent settings
iterations = 1000
alpha = 5.0e-7
# run gradient descent 
w_final, b_final, J_hist = gradient_descent(X_train, y_train, initial_w, initial_b, compute_cost, compute_gradient, alpha, iterations)
print(f"b,w found by gradient descent: {b_final:0.2f},{w_final} ")
m,_ = X_train.shape
for i in range(m):
    print(f"prediction: {np.dot(X_train[i], w_final) + b_final:0.2f}, target value: {y_train[i]}")

在这里插入图片描述

绘图可视化损失和迭代步数

# plot cost versus iteration  
fig, (ax1, ax2) = plt.subplots(1, 2, constrained_layout=True, figsize=(12, 4))
ax1.plot(J_hist)
ax2.plot(100 + np.arange(len(J_hist[100:])), J_hist[100:])
ax1.set_title("Cost vs. iteration");  ax2.set_title("Cost vs. iteration (tail)")
ax1.set_ylabel('Cost')             ;  ax2.set_ylabel('Cost') 
ax1.set_xlabel('iteration step')   ;  ax2.set_xlabel('iteration step') 
plt.show()

在这里插入图片描述
由此可以看出,损失仍在下降,而我们的预测并不是非常准确。下一个博客将探讨如何改进这一点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/810813.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Maven】让maven更高效,优化maven构建项目速度

打开idea的setting&#xff0c;找到maven&#xff0c;设置它多线程数&#xff0c;重启后即可&#xff01; 我这里是8&#xff0c;你们可以随便设置。 如下图&#xff1a;

Android 之 使用 Camera 拍照

本节引言 本节给大家带来的是Android中Camera的使用&#xff0c;简单点说就是拍照咯&#xff0c;无非两种&#xff1a; 1.调用系统自带相机拍照&#xff0c;然后获取拍照后的图片 2.要么自己写个拍照页面 本节我们来写两个简单的例子体验下上面的这两种情况~ 1.调用系统自带…

《向量数据库指南》:向量数据库Pinecone如何集成LangChain(二)

目录 创建嵌入 向量数据库 索引 创建向量存储并查询 生成式问答 创建嵌入 使用LangChain的OpenAI嵌入功能构建嵌入非常简单。我们首先需要运行下一个单元格,以添加我们的OpenAI API密钥: Python from getpass import getpassOPENAI_API_KEY = getpass("OpenAI…

CleanMyMac X4.14.1中文版如何清理 Mac系统?CleanMyMac 真的能断网激活吗?

CleanMyMac X4.14.1中文版如何清理 Mac系统&#xff1f;Mac系统在使用过程中都会产生大量系统垃圾&#xff0c;如不需要的系统语言安装包&#xff0c;视频网站缓存文件&#xff0c;mac软件卸载残留的注册表等。 随着时间推移&#xff0c;mac系统垃圾就会越来越多&#xff0c;电…

Spring事务创建与使用

目录 前言Spring中事务的实现声明式事务Transactional 作⽤范围Transactional 参数说明对于事务不回滚的解决方案 前言 在数据库中我们提到了 事务, 事务的定义为, 将一系列操作封装成一个整体去调用 , 要么一起成功, 要么一起失败 Spring中事务的实现 在Spring中事务的操作…

LLaMA:开放和高效的基础语言模型

Part1前言 我们介绍了LLaMA&#xff0c;这是一个参数范围从7B到65B的基础语言模型集合。我们在数以万亿计的标记上训练我们的模型&#xff0c;并表明有可能完全使用公开可用的数据集来训练最先进的模型&#xff0c;而不必求助于专有的和不可获取的数据集。特别是&#xff0c;L…

快解析内网穿透和nginx端口映射的比较

众所周知&#xff0c;Nginx是一个高性能的Web服务器和反向代理服务器&#xff0c;快解析是一种内网穿透工具&#xff0c;使内部设备可以通过互联网进行访问。虽然它们都涉及到网络连接和端口使用&#xff0c;但在功能和用途上有一些区别。下面就来具体分析一下。 1.Nginx端口映…

Java中的锁分类

Java中有很多的锁&#xff0c;但是并不全指锁&#xff0c;有些指锁的特性&#xff0c;设计&#xff0c;状态。 1.乐观锁 乐观锁认为在更新数据时&#xff0c;乐观的认为并发时并不会出现问题&#xff0c;即不加锁。 2.悲观锁 悲观锁认为多线程对同一个数据进行操作时&#…

数据结构——复杂度

总有一天你要一个人&#xff0c;再暗夜中&#xff0c;向那座桥走过去 文章目录 一、算法的复杂度 考察形式范例 二、算法的时间复杂度 大O的渐进表示法 常见的复杂度对比 例题&#xff1a;消失的数字 题目的三种思路 1.排序遍历 2.减法 3.单身狗思想 三、空间复杂度…

UE5、CesiumForUnreal加载无高度地形

文章目录 1.实现目标2.实现过程3.参考资料1.实现目标 在UE5中,CesiumForUnreal插件默认的地形都是带高度的,这里加载没有高度的地形,即大地高程为0,GIF动图如下: 2.实现过程 参考官方的教程,下载无高度的DEM,再切片加载到UE中。 (1)下载无高度地形DEM0。 在官方帖子…

用合成数据训练托盘检测模型【机器学习】

想象一下&#xff0c;你是一名机器人或机器学习 (ML) 工程师&#xff0c;负责开发一个模型来检测托盘&#xff0c;以便叉车可以操纵它们。 ‌你熟悉传统的深度学习流程&#xff0c;已经整理了手动标注的数据集&#xff0c;并且已经训练了成功的模型。 推荐&#xff1a;用 NSDT设…

day58 单调栈

单调栈 使用场景&#xff1a;通常是一维数组&#xff0c;要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置 本质&#xff1a;空间换时间 三个判断条件&#xff1a; 当前遍历的元素T[i]小于栈顶元素T[st.top()]的情况 当前遍历的元素T[i]等于栈顶元素T[st.to…

tinkerCAD案例:24.Tinkercad 中的自定义字体

tinkerCAD案例&#xff1a;24.Tinkercad 中的自定义字体 原文 Tinkercad Projects Tinkercad has a fun shape in the Shape Generators section that allows you to upload your own font in SVG format and use it in your designs. I’ve used it for a variety of desi…

JavaSE第二次考试复盘

sleep是线程类&#xff08;Thread&#xff09;的方法&#xff0c;导致此线程暂停执行指定时间&#xff0c;给执行机会给其他线程&#xff0c;但是监控状态依然保持&#xff0c;到时候会自动恢复。调用sleep不会释放对象锁wait是Object类的方法&#xff0c;对此对象调用wait方法…

AI 能在哪些方面提高普通的程序员的效率

一、提高编码效率 1、起名字&#xff1a;变量名、函数名、类名、表名、数据库名(相信每个程序员都因为起名字掉了不少头发) 2、写简单的工具函数代码、结构转换代码&#xff1a;比如求2个数组的元素交集&#xff1b;把类转换成B类&#xff0c;原来需要一个字段一个字段的手动赋…

用LangChain开源框架实现知识机器人

前言 Large Language Models (LLMs)在2020年OpenAI 的 GPT-3 的发布而进入世界舞台 。从那时起&#xff0c;他们稳步增长进入公众视野。 众所周知 OpenAI 的 API 无法联网&#xff0c;所以大家如果想通过它的API实现联网搜索并给出回答、总结 PDF 文档、基于某个 Youtube 视频…

前端学习——Vue (Day6)

路由进阶 路由的封装抽离 //main.jsimport Vue from vue import App from ./App.vue import router from ./router/index// 路由的使用步骤 5 2 // 5个基础步骤 // 1. 下载 v3.6.5 // 2. 引入 // 3. 安装注册 Vue.use(Vue插件) // 4. 创建路由对象 // 5. 注入到new Vue中&…

【Python】批量修改文件名

对指定文件夹中的文件名称修改&#xff1a; import os#文件路径 path D:\大明风华[第01-62集]#获取文件列表 file os.listdir(path)#print(file)#原文件名是 大明风华.Ming.Dynasty.2019.E01.2160p.60FPS.WEB-DL.H265.10bit.AAC-SeeTV.mp4 #预期修改后文件名 大明风华.E01.…

C语言基础入门详解二

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂&#xff0c;风趣幽默"&#xff0c;感觉非常有意思,忍不住分享一下给大家。 &#x1f449;点击跳转到教程 一、C语言多级指针入门 #include<stdio.h> #include<stdlib.h>/**多级指针…

【报错1】无法找到模块“element-plus/dist/locale/zh-cn.mjs”的声明文件。

报错&#xff1a;无法找到模块“element-plus/dist/locale/zh-cn.mjs”的声明文件。“e:/codeAll/webProject/Project/vue_ts/project727/node_modules/element-plus/dist/locale/zh-cn.mjs”隐式拥有 "any" 类型。 如果“element-plus”包实际公开了此模块&#x…