1写在前面
好长时间没更新了,这周真的是天天都在手术室度过,常讲到的一句话就是苦的一比啊
。🫠
很久没有见过外面的世界了,世界那么大,我也想去看看!~😂
废话太多了,今天的教程是环形dendrogram
,颜值还是不错的。😋
大家来一起看看吧!~🌟
2用到的包
rm(list = ls())
library(ggraph)
library(igraph)
library(tidyverse)
library(RColorBrewer)
3示例数据
3.1 edges数据
首先我们无中生有
一个data
,典型的from
和to
两列。🤓
d1 <- data.frame(from = "origin", to = paste("group", seq(1,10), sep=""))
d2 <- data.frame(from = rep(d1$to, each=10), to = paste("subgroup", seq(1,100), sep = "_"))
edges <- rbind(d1, d2)
DT::datatable(edges)

3.2 创建nodes数据
一样的,我们生成些随机数
给from
和to
吧。🥳
这些数值就作为nodes
的data
。🧐
vertices <- data.frame(
name = unique(c(as.character(edges$from), as.character(edges$to))) ,
value = runif(111)
)
DT::datatable(vertices)

4添加分组
我们再添加一列,显示每个name
的分组。🤨
后面可以用来分类颜色。😜
vertices$group <- edges$from[match(vertices$name, edges$to)]
DT::datatable(vertices)

5添加labels信息
5.1 计算labels的角度
vertices$id <- NA
myleaves <- which(is.na( match(vertices$name, edges$from) ))
nleaves <- length(myleaves)
vertices$id[ myleaves ] <- seq(1:nleaves)
vertices$angle <- 90 - 360 * vertices$id / nleaves
DT::datatable(vertices)

5.2 计算labels的对齐方式
vertices$hjust<-ifelse(vertices$angle < -90, 1, 0)
DT::datatable(vertices)

5.3 反转角度
我们反转一下角度,方便阅读。🧐
vertices$angle<-ifelse(vertices$angle < -90, vertices$angle+180, vertices$angle)
DT::datatable(vertices)

6igraph创建网络对象
net <- graph_from_data_frame(edges, vertices=vertices)
net

7最终绘图
ggraph(net, layout = 'dendrogram', circular = T) +
geom_edge_diagonal(colour="grey") +
scale_edge_colour_distiller(palette = "RdPu") +
geom_node_text(aes(x = x*1.15, y=y*1.15,
filter = leaf, label=name,
angle = angle, hjust=hjust,
colour=group),
size=2.7, alpha=1) +
geom_node_point(aes(filter = leaf, x = x*1.07, y=y*1.07,
colour=group, size=value, alpha=0.2)) +
scale_colour_manual(values= rep( brewer.pal(9,"Paired") , 30)) +
scale_size_continuous( range = c(0.1,10) ) +
theme_void() +
theme(
legend.position="none",
plot.margin=unit(c(0,0,0,0),"cm"),
) +
expand_limits(x = c(-1.3, 1.3), y = c(-1.3, 1.3))


点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......
本文由 mdnice 多平台发布