【使用维纳滤波进行信号分离】基于维纳-霍普夫方程的信号分离或去噪维纳滤波器估计(Matlab代码实现)

news2025/1/10 17:05:24

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

维纳滤波器是一种常用的信号处理技术,可用于信号分离和去噪。基于维纳-霍普夫方程的维纳滤波器是一种理想滤波器,旨在最小化原始信号与滤波器输出之间的误差。

在信号分离或去噪任务中,我们有一个观测信号y,它可以被表示为原始信号s和加性噪声n的叠加:y = s + n。维纳滤波器的目标是找到一个滤波器h,使得滤波器的输出y' = h * y能够近似地估计原始信号s。

根据维纳-霍普夫方程,最优的维纳滤波器可以通过以下形式计算得到:

h = (P_ss * H^T) * (H * P_ss * H^T + P_nn)^(-1)

其中,H是观测信号y的转置矩阵,P_ss是原始信号s的自相关矩阵,P_nn是噪声n的自相关矩阵(通常被假设为对角矩阵)。

维纳滤波器的输出可以通过以下方式得到:

y' = h * y = (P_ss * H^T) * (H * P_ss * H^T + P_nn)^(-1) * y

通过将观测信号y代入上式,我们可以得到分离或去噪后的信号估计值y'。

需要注意的是,维纳滤波器的性能受到观测信号的统计特性以及原始信号和噪声的自相关性质的影响。因此,在使用维纳滤波器进行信号分离或去噪时,需要对信号和噪声的统计特性有一定的了解,并相应地选择合适的参数和技术。此外,维纳滤波器可能对信号的频谱产生一定的改变,因此在实际应用中需要仔细考虑这一点。

📚2 运行结果

部分代码:

function [xest,B,MSE] = wienerFilt(x,y,N)
%
% Wiener filter based on Wiener-Hopf equations
%   This function takes as inputs a noisy signal, x, and a reference signal, y,
%   in order to compute a N-order linear filter that provides an estimate of y
%   from x
%  
% INPUTS
% x = noisy signal
% y = reference signalsinit
% N = filter order
%
% OUTPUTS
% xest = estimated signal
% b = Wiener filter coefficents
% MSE = mean squared error
%


X = 1/N .* fft(x(1:N));
Y = 1/N .* fft(y(1:N));
X = X(:);
Y = Y(:);

Rxx = N .* real(ifft(X .* conj(X))); % Autocorrelation function
Rxy = N .* real(ifft(X .* conj(Y))); % Crosscorrelation function
Rxx = toeplitz(Rxx);
Rxy = Rxy';
B = Rxy / Rxx; B = B(:); % Wiener-Hopf eq. B = inv(Rxx) Rxy
xest = fftfilt(B,x);
xest = xest(N+1:end); % cut first N samples due to distorsion during filtering operation
MSE = mean(y(N+1:end) - xest) .^2; % mean squared error

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]韩笑雪,孙尚,毛文梁.基于改进维纳滤波的自适应电力线通信降噪方法[J].电脑与信息技术,2023,31(03):55-57.DOI:10.19414/j.cnki.1005-1228.2023.03.018.

[2]唐佳瑶,罗一涵,谢宗良等.基于中频域维纳滤波的非视域成像算法研究[J].物理学报,2023,72(01):205-214.

[3]蒲素兰,谢慧雯,郭昊等.结合维纳滤波的相干波束合成超声成像研究[J].CT理论与应用研究,2022,31(06):793-808.DOI:10.15953/j.ctta.2022.043.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/806410.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Windows】WDS中如何跳过语言选择以及身份验证

WDS(Windows Deployment Services)是微软的一项网络服务,用于快速和方便地部署Windows操作系统到多台计算机上。它提供了一种自动化的方式来安装、配置和管理操作系统映像,使企业能够快速部署和更新大量的计算机系统。网上有很多W…

二叉搜索树的本质

引言 打算写写树形数据结构:二叉查找树、红黑树、跳表和 B 树。这些数据结构都是为了解决同一个基本问题:如何快速地对一个大集合执行增删改查。 本篇是第一篇,讲讲搜索树的基础:二叉搜索树。 基本问题 如何在一千万个手机号中…

设计模式-中介者模式在Java中使用示例-客户信息管理

场景 欲开发客户信息管理窗口界面,界面组件之间存在较为复杂的交互关系:如果删除一个客户, 要在客户列表(List)中删掉对应的项,客户选择组合框(ComboBox)中客户名称也将减少一个; 如果增加一个客户信息,…

SpringBoot2.7集成Swagger3.0和knife4j实现API接口文档开发

1. 概述 Swagger 3 是一个用于描述、构建和测试 RESTful Web 服务的开源工具集。它提供了一种简单而强大的方式来定义和文档化 API 接口,同时还具备自动生成客户端代码和服务器存根代码的功能。 Knife4j是一个集Swagger2 和 OpenAPI3为一体的增强解决方案&#xff…

DNSPod十问秦勇:为什么医疗AI最爱眼科?

本期嘉宾 秦勇 鹰瞳科技Airdoc COO 秦勇,鹰瞳科技(Airdoc)COO,中国人工智能学会智慧医疗专委会委员,长期从事医疗人工智能方向的工作,拥有丰厚的项目经验、管理经验和技术积累,参与多个医院人…

掌握Python的X篇_13+14_Python条件语句实例:判断闰年、成绩评定

前面学习了条件语句以及调试的基本技巧,本篇介绍两个与条件语句有关的实例,对前面的知识又深刻认识。 文章目录 1. 判断闰年1.1 版本11.2 版本21.3 一行代码太长的处理方法 2. 根据成绩评级 1. 判断闰年 用户输入年份,判断该年份是否为闰年…

基于springboot+jpa+mysql+html网上中药商城系统

基于springbootjpamysqlhtml网上中药商城系统 一、系统介绍二、功能展示1.主页(客户)2.登陆(客户)3.注册(客户)4.购物车(客户)5.我的订单(客户)6.用户管理(管理员)7.分类管理&#x…

基于鲸鱼优化算法的5G信道估计(Matlab代码实现)

💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑…

1400*D. Divide by three, multiply by two

题意&#xff1a; 一个序列&#xff0c;每个数都是前一个数乘2或者除3&#xff0c;打乱之后&#xff0c;需要你排出原来的序列。 queue和deque模拟 #include<bits/stdc.h> using namespace std; typedef long long ll; const int N1e55; ll n,a[N]; queue<ll>q; d…

Python进行数据分析(详细教程)

1.为什么选择Python进行数据分析&#xff1f; Python是一门动态的、面向对象的脚本语言&#xff0c;同时也是一门简约&#xff0c;通俗易懂的编程语言。Python入门简单&#xff0c;代码可读性强&#xff0c;一段好的Python代码&#xff0c;阅读起来像是在读一篇外语文章。Pyth…

【Linux命令200例】locate强大的文件查找利器

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;本文已收录于专栏&#xff1a;Linux命令大全。 &#x1f3c6;本专栏我们会通过具体的系统的命令讲解加上鲜活的实操案例对各个命令进行深入…

2.uni-app项目文件

uni-app像是vue与微信小程序的合体&#xff0c;使用 uni-ui项目 模板创建的项目文件如下 目录 1 pages 2 pages.json 3 App.vue 4 index.html 5 static 6 uni_modules 7 manifest.json 8 main.js 9 uni.scss 1 pages 这个是放页面的&#xff0c;默认里面有…

list与sort()

运行代码&#xff1a; //list与sort() #include"std_lib_facilities.h" //声明Item类 struct Item {string name;int iid;double value;Item():name(" "),iid(0),value(0.0){}Item(string ss,int ii,double vv):name(ss),iid(ii),value(vv){}friend istre…

七、用户画像

目录 7.1 什么是用户画像7.2 标签系统7.2.1 标签分类方式7.2.2 多渠道获取标签 7.3 用户画像数据特征7.3.1 常见的数据形式7.3.2 文本挖掘算法7.3.3 嵌入式表示7.3.4 相似度计算方法 7.4 用户画像应用 因此只基于某个层面的数据便可以产生部分个体面像&#xff0c;可用于从特定…

pso优化bp网络机械故障诊断(MATLAB代码)

在混合算法中,需要优化的对象(粒子)是 BP 神经网络的权值和值。首先应把要优化的神经网络的全部权值和闽值构成一个实数数组,并赋予它们 [0,1之间的随机数。然后,按照选定的网络结构,用前向算法计算出对应于每组输入样本的神经网络输出。这里BP网络的激活函数都选为sigmoid 函数…

【unity细节】怎么让物体产生碰撞后不会被撞飞,但是有碰撞停止的效果

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 秩沅 原创 收录于专栏&#xff1a;unity细节和bug ⭐怎么让物体产生碰撞后不会被撞飞&#xff0c;但是有碰撞停止的效果⭐ 文章目录…

PHP-Mysql图书管理系统--【白嫖项目】

强撸项目系列总目录在000集 PHP要怎么学–【思维导图知识范围】 文章目录 本系列校训本项目使用技术 首页phpStudy 设置导数据库后台的管理界面数据库表结构项目目录如图&#xff1a;代码部分&#xff1a;主页的head 配套资源作业&#xff1a; 本系列校训 用免费公开视频&am…

Linux安装Kafka图形化界面

Apache Kafka本身是一个分布式的消息系统&#xff0c;它并没有官方提供的图形界面。Kafka主要通过命令行界面进行管理和操作。 如果你需要一个可视化的界面来管理Kafka&#xff0c;可以考虑安装一些第三方的Kafka管理工具&#xff0c;例如Kafdrop、Kafka Manager或Conduktor等…

NOAUTH Authentication required解决方法

执行redis报错如下&#xff1a; 提示需要进行权限认证 解决方案 输入redis密码 格式&#xff1a; auth 密码

vue使用Clodop插件打印

一、前往lodop官网&#xff0c;下载插件&#xff0c;http://www.lodop.net/index.html 这里下载的window64位的&#xff0c;将插件安装好&#xff0c;运行&#xff0c;会看到 点击‘去了解C-Lodop>>’,会跳转至使用说明页面&#xff0c;在这个页面里&#xff0c;可以打印…