一、数组的基本概念
1.1 为什么要使用数组
假设现在要存5个学生的javaSE考试成绩,并对其进行输出,则可有
public static void main(String[] args){
int score1 = 70;
int score2 = 80;
int score3 = 85;
int score4 = 60;
int score5 = 90;
System.out.println(score1);
System.out.println(score2);
System.out.println(score3);
System.out.println(score4);
System.out.println(score5);
}
数据是同种类型,如果要存入多个数据,上述方法就非常麻烦,可以用一种更简单的方法来存储数据,那就是数组。
1.2 什么是数组
数组:可以看成是相同类型元素的一个集合。在内存中是一段连续的空间。
注意:数组中存放的元素其类型相同,数组的空间是连在一起的每个空间有自己的编号,起始位置编号即数组的下标为0。
1.3 数组的创建及初始化
1.数组的创建
T[] 数组名 = new T[N];
T:数组中存放元素的类型,T[]:数组的类型,N:数组的长度。
int[] array1 = new int[10];
double[] array2 = new double[5];
2.数组的初始化
数组的初始化主要分为动态初始化以及静态初始化。
动态初始化:在创建数组时,直接指定数组中元素的个数。
int[] array = new int[10];
静态初始化:在创建数组时不直接指定数据元素个数,而直接将具体的数据内容进行指定。
格式:T[] 数组名称 = {data1, data2, data3, ..., datan};
int[] array1 = new int[]{0,1,2,3,4,5,6,7,8,9};
double[] array2 = new double[]{1.0, 2.0, 3.0, 4.0, 5.0};
注意:静态初始化虽然没有指定数组的长度,但编译器在编译时会根据{}中元素个数来确定数组的长度,静态初始化可以简写,省去后面的new T[]。
int[] array1 = {0,1,2,3,4,5,6,7,8,9};
double[] array2 = {1.0, 2.0, 3.0, 4.0, 5.0};
静态和动态初始化也可以分为两步,但是省略格式不可以。
int[] array1;
array1 = new int[10];
int[] array2;
array2 = new int[]{10, 20, 30};
// 编译失败
// int[] array3;
// array3 = {1, 2, 3};
如果没有对数组进行初始化,数组中元素有其默认值,如果数组中存储元素类型为基类类型,默认值为基类类型对应的默认值,如果数组中存储元素类型为引用类型,默认值为null。
类型 | 默认值 |
byte | 0 |
short | 0 |
int | 0 |
long | 0 |
float | 0.0f |
double | 0.0 |
char | /u0000 |
boolean | false |
1.4 数组的使用
数组在内存中是一段连续的空间,空间的编号都是从0开始的,依次递增,该编号称为数组的下标,数组可以通过下标访问其任意位置的元素。
例如
int[]array = new int[]{10, 20, 30, 40, 50};
System.out.println(array[0]);
System.out.println(array[1]);
System.out.println(array[2]);
System.out.println(array[3]);
System.out.println(array[4]);// 也可以通过[]对数组中的元素进行修改
array[0] = 100;
System.out.println(array[0]);
注意:数组支持随机访问,即通过下标访问快速访问数组中任意位置的元素,下标从0开始,介于[0, N)之间不包含N,N为元素个数。
遍历数组:将数组中的所有元素都访问一遍。
int[]array = new int[]{10, 20, 30, 40, 50};
for(int i = 0; i < 5; i++){
System.out.println(array[i]);
也可以使用 for-each 遍历数组。
int[] array = {1, 2, 3};
for (int x : array) {
System.out.println(x);
}
在数组中可以通过 数组对象.length 来获取数组的长度。
int[]array = new int[]{10, 20, 30, 40, 50};
for(int i = 0; i < array.length; i++){
System.out.println(array[i]);}
二、数组是引用类型
2.1初始JVM的内存分布
内存是一段连续的存储空间,主要用来存储程序运行时的数据,例如:程序运行时代码需要加载到内存;程序运行产生的中间数据要存放在内存;程序中的常量也要保存;有些数据可能需要长时间存储,而有些数据当方法运行结束后就要被销毁。如果对内存中存储的数据不加区分的随意存储,那对内存管理起来将会非常麻烦,故JVM也对所使用的内存按功能不同进行划分。
方法区和堆是由所有线程共享的数据区,而虚拟机栈、本地方法栈和程序计数器是线程隔离的数据区。
程序计数器 : 只是一个很小的空间, 保存下一条执行的指令的地址
虚拟机栈: 与方法调用相关的一些信息,每个方法在执行时,都会先创建一个栈帧,栈帧中包含有:局部变量表、操作数栈、动态链接、返回地址以及其他的一些信息,保存的都是与方法执行时相关的一些信息。比如:局部变量。当方法运行结束后,栈帧就被销毁了,即栈帧中保存的数据也被销毁。
本地方法栈: 本地方法栈与虚拟机栈的作用类似. 只不过保存的内容是Native方法的局部变量. 在有些版本的 JVM 实现中(例如HotSpot), 本地方法栈和虚拟机栈是一起的。
堆: JVM所管理的最大内存区域. 使用 new 创建的对象都是在堆上保存 (例如前面的 new int[]{1, 2,3} ),堆是随着程序开始运行时而创建,随着程序的退出而销毁,堆中的数据只要还有在使用,就不会被销毁。
方法区: 用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据, 方法编译出的的字节码就是保存在这个区域。
2.2 基本类型变量和引用类型变量
基本数据类型创建的变量,称为基本变量,该变量空间中直接存放的是其所对应的值;而引用数据类型创建的变量,一般称为对象的引用,其空间中存储的是对象所在空间的地址。
public static void func() {
int a = 10;
int b = 20;
int[] arr = new int[]{1,2,3};
}
a、b、arr,都是函数内部的变量,故其空间都在main方法对应的栈帧中分配,a、b是内置类型的变量,故其空间中保存的就是给该变量初始化的值,array是数组类型的引用变量,其内部保存的内容是数组在堆空间中的首地址。引用变量并不直接存储对象本身,可以简单理解成存储的是对象在堆中空间的起始地址。通过该地址,引用变量便可以去操作对象。
2.3引用变量
public static void func() {
int[] array1 = new int[3];
array1[0] = 10;
array1[1] = 20;
array1[2] = 30;
int[] array2 = new int[]{1,2,3,4,5};
array2[0] = 100;
array2[1] = 200;
array1 = array2;
array1[2] = 300;
array1[3] = 400;
array2[4] = 500;
for (int i = 0; i < array2.length; i++) {
System.out.println(array2[i]);
}
}
2.4 null
null 在 Java 中表示 "空引用" , 也就是一个不指向对象的引用。null 的作用类似于 C 语言中的 NULL (空指针), 都是表示一个无效的内存位置. 因此不能对这个内存进行任何读写操作。
int[] arr = null;
System.out.println(arr[0]);
三、数组的应用场景
3.1保存数据
public static void main(String[] args) {
int[] array = {1, 2, 3};
for(int i = 0; i < array.length; ++i){
System.out.println(array[i] + " ");
}
}
3.2作为函数的参数
1.参数传基本数据类型
public static void main(String[] args) {
int num = 0;
func(num);
System.out.println("num = " + num);
}
public static void func(int x) {
x = 10;
System.out.println("x = " + x);}
2.参数传数组类型(引用数据类型)
public static void main(String[] args) {
int[] arr = {1, 2, 3};
func(arr);
System.out.println("arr[0] = " + arr[0]);
}
public static void func(int[] a) {
a[0] = 10;
System.out.println("a[0] = " + a[0]);}
总结: 所谓的 "引用" 本质上只是存了一个地址. Java 将数组设定成引用类型, 这样的话后续进行数组参数传参, 其实只是将数组的地址传入到函数形参中。
3.3 作为函数返回值
示例 求斐波那契数列前N项
public static int[] fib(int n){
if(n <= 0){
return null;
}int[] array = new int[n];
array[0] = array[1] = 1;
for(int i = 2; i < n; ++i){
array[i] = array[i-1] + array[i-2];
}return array;
}
public static void main(String[] args) {
int[] array = fib(10);
for (int i = 0; i < array.length; i++) {
System.out.println(array[i]);
}
}
四、数组练习
4.1 数组转字符串
示例
import java.util.Arrays
int[] arr = {1,2,3,4,5,6};
String newArr = Arrays.toString(arr);
System.out.println(newArr);
Java 中提供了 java.util.Arrays 包, 其中包含了一些操作数组的常用方法。
4.2 数组拷贝
4.3 求数组中元素的平均值
给定一个整型数组, 求平均值。
示例
public static void main(String[] args) {
int[] arr = {1,2,3,4,5,6};
System.out.println(avg(arr));
}
public static double avg(int[] arr) {
int sum = 0;
for (int x : arr) {
sum += x;
}return (double)sum / (double)arr.length;
}
4.4 查找数组中指定元素(顺序查找)
给定一个数组, 再给定一个元素, 找出该元素在数组中的位置。
示例
public static void main(String[] args) {
int[] arr = {1,2,3,10,5,6};
System.out.println(find(arr, 10));
}
public static int find(int[] arr, int data) {
for (int i = 0; i < arr.length; i++) {
if (arr[i] == data) {
return i;
}
}return -1;
}
4.5查找数组中指定元素(二分查找)
针对有序数组, 可以使用更高效的二分查找,有序数组指元素依次增大或依次减小的数组。以升序数组为例, 二分查找的思路是先取中间位置的元素, 然后使用待查找元素与数组中间元素进行比较,如果相等,即找到了返回该元素在数组中的下标,如果小于,以类似方式到数组左半侧查找,如果大于,以类似方式到数组右半侧查找。
示例
public static void main(String[] args) {
int[] arr = {1,2,3,4,5,6};
System.out.println(binarySearch(arr, 6));
}
public static int binarySearch(int[] arr, int toFind) {
int left = 0;
int right = arr.length - 1;
while (left <= right) {int mid = (left + right) / 2;
if (toFind < arr[mid]) {
// 去左侧区间找
right = mid - 1;
} else if (toFind > arr[mid]) {
// 去右侧区间找
left = mid + 1;
} else {
// 相等, 说明找到了
return mid;
}
} // 循环结束, 说明没找到
return -1;}
4.6数组排序(冒泡排序)
给定一个数组, 让数组升序 (降序) 排序,分析:假设升序,将数组中相邻元素从前往后依次进行比较,如果前一个元素比后一个元素大,则交换,一趟下来后最大元素就在数组的末尾,依次从上上述过程,直到数组中所有的元素都排列好
示例
import java.util.Arrays; public static void main(String[] args) { int[] arr = {9, 5, 2, 7}; bubbleSort(arr); System.out.println(Arrays.toString(arr)); }public static void bubbleSort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
for (int j = 1; j < arr.length-i; j++) {
if (arr[j-1] > arr[j]) {
int tmp = arr[j - 1];
arr[j - 1] = arr[j];
arr[j] = tmp;
}
}
}
}
冒泡排序性能较低. Java 中内置了更高效的排序算法
public static void main(String[] args) {
int[] arr = {9, 5, 2, 7};
Arrays.sort(arr);
System.out.println(Arrays.toString(arr));
}
4.7数组逆序
给定一个数组, 将里面的元素逆序排列,分析:设定两个下标, 分别指向第一个元素和最后一个元素. 交换两个位置的元素,然后让前一个下标自增, 后一个下标自减, 循环继续即可。
示例
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4};
reverse(arr);
System.out.println(Arrays.toString(arr));
}
public static void reverse(int[] arr) {
int left = 0;
int right = arr.length - 1;
while (left < right) {
int tmp = arr[left];
arr[left] = arr[right];
arr[right] = tmp;
left++;right--;
}}
五、二维数组