微软开源贾维斯(J.A.R.V.I.S.)人工智能AI助理系统

news2025/1/9 21:19:41

贾维斯(Jarvis)的环境配置

一般情况下,深度学习领域相对主流的入门级别显卡是2070或者3070,而3090可以算是消费级深度学习显卡的天花板了:

再往上走就是工业级别的A系列和V系列显卡,显存是一个硬指标,因为需要加载本地的大模型,虽然可以改代码对模型加载进行“阉割”,但功能上肯定也会有一定的损失。如果没有3090,也可以组两块3060 12G的并行,显存虽然可以达标,但算力和综合性能抵不过3090。

确保本地具备足以支撑贾维斯(Jarvis)的硬件环境之后,老规矩,克隆项目:

git clone https://github.com/microsoft/JARVIS.git

随后进入项目目录:

cd JARVIS

修改项目的配置文件 server/config.yaml:

openai:  
  key: your_personal_key # gradio, your_personal_key  
huggingface:  
  cookie: # required for huggingface inference  
local: # ignore: just for development  
  endpoint: http://localhost:8003  
dev: false  
debug: false  
log_file: logs/debug.log  
model: text-davinci-003 # text-davinci-003  
use_completion: true  
inference_mode: hybrid # local, huggingface or hybrid  
local_deployment: minimal # no, minimal, standard or full  
num_candidate_models: 5  
max_description_length: 100  
proxy:   
httpserver:  
  host: localhost  
  port: 8004  
modelserver:  
  host: localhost  
  port: 8005  
logit_bias:  
  parse_task: 0.1  
  choose_model: 5

这里主要修改三个配置即可,分别是openaikey,huggingface官网的cookie令牌,以及OpenAI的model,默认使用的模型是text-davinci-003。

修改完成后,官方推荐使用虚拟环境conda,Python版本3.8,私以为这里完全没有任何必要使用虚拟环境,直接上Python3.10即可,接着安装依赖:

pip3 install -r requirements.txt

项目依赖库如下:

git+https://github.com/huggingface/diffusers.git@8c530fc2f6a76a2aefb6b285dce6df1675092ac6#egg=diffusers  
git+https://github.com/huggingface/transformers@c612628045822f909020f7eb6784c79700813eda#egg=transformers  
git+https://github.com/patrickvonplaten/controlnet_aux@78efc716868a7f5669c288233d65b471f542ce40#egg=controlnet_aux  
tiktoken==0.3.3  
pydub==0.25.1  
espnet==202301  
espnet_model_zoo==0.1.7  
flask==2.2.3  
flask_cors==3.0.10  
waitress==2.1.2  
datasets==2.11.0  
asteroid==0.6.0  
speechbrain==0.5.14  
timm==0.6.13  
typeguard==2.13.3  
accelerate==0.18.0  
pytesseract==0.3.10  
gradio==3.24.1

这里web端接口是用Flask2.2高版本搭建的,但奇怪的是微软并未使用Flask新版本的异步特性。

安装完成之后,进入模型目录:

cd models

下载模型和数据集:

sh download.sh

这里一定要做好心理准备,因为模型就已经占用海量的硬盘空间了,数据集更是不必多说,所有文件均来自huggingface:

models="  
nlpconnect/vit-gpt2-image-captioning  
lllyasviel/ControlNet  
runwayml/stable-diffusion-v1-5  
CompVis/stable-diffusion-v1-4  
stabilityai/stable-diffusion-2-1  
Salesforce/blip-image-captioning-large  
damo-vilab/text-to-video-ms-1.7b  
microsoft/speecht5_asr  
facebook/maskformer-swin-large-ade  
microsoft/biogpt  
facebook/esm2_t12_35M_UR50D  
microsoft/trocr-base-printed  
microsoft/trocr-base-handwritten  
JorisCos/DCCRNet_Libri1Mix_enhsingle_16k  
espnet/kan-bayashi_ljspeech_vits  
facebook/detr-resnet-101  
microsoft/speecht5_tts  
microsoft/speecht5_hifigan  
microsoft/speecht5_vc  
facebook/timesformer-base-finetuned-k400  
runwayml/stable-diffusion-v1-5  
superb/wav2vec2-base-superb-ks  
openai/whisper-base  
Intel/dpt-large  
microsoft/beit-base-patch16-224-pt22k-ft22k  
facebook/detr-resnet-50-panoptic  
facebook/detr-resnet-50  
openai/clip-vit-large-patch14  
google/owlvit-base-patch32  
microsoft/DialoGPT-medium  
bert-base-uncased  
Jean-Baptiste/camembert-ner  
deepset/roberta-base-squad2  
facebook/bart-large-cnn  
google/tapas-base-finetuned-wtq  
distilbert-base-uncased-finetuned-sst-2-english  
gpt2  
mrm8488/t5-base-finetuned-question-generation-ap  
Jean-Baptiste/camembert-ner  
t5-base  
impira/layoutlm-document-qa  
ydshieh/vit-gpt2-coco-en  
dandelin/vilt-b32-finetuned-vqa  
lambdalabs/sd-image-variations-diffusers  
facebook/timesformer-base-finetuned-k400  
facebook/maskformer-swin-base-coco  
Intel/dpt-hybrid-midas  
lllyasviel/sd-controlnet-canny  
lllyasviel/sd-controlnet-depth  
lllyasviel/sd-controlnet-hed  
lllyasviel/sd-controlnet-mlsd  
lllyasviel/sd-controlnet-openpose  
lllyasviel/sd-controlnet-scribble  
lllyasviel/sd-controlnet-seg  
"  
  
# CURRENT_DIR=$(cd `dirname $0`; pwd)  
CURRENT_DIR=$(pwd)  
for model in $models;  
do  
    echo "----- Downloading from https://huggingface.co/"$model" -----"  
    if [ -d "$model" ]; then  
        # cd $model && git reset --hard && git pull && git lfs pull  
        cd $model && git pull && git lfs pull  
        cd $CURRENT_DIR  
    else  
        # git clone 包含了lfs  
        git clone https://huggingface.co/$model $model  
    fi  
done  
  
datasets="Matthijs/cmu-arctic-xvectors"  
  
for dataset in $datasets;  
 do  
     echo "----- Downloading from https://huggingface.co/datasets/"$dataset" -----"  
     if [ -d "$dataset" ]; then  
         cd $dataset && git pull && git lfs pull  
         cd $CURRENT_DIR  
     else  
         git clone https://huggingface.co/datasets/$dataset $dataset  
     fi  
done

也可以考虑拆成两个shell,开多进程下载,速度会快很多。

但事实上,真的,别下了,文件属实过于巨大,这玩意儿真的不是普通人能耍起来的,当然选择不下载本地模型和数据集也能运行,请看下文。

漫长的下载流程结束之后,贾维斯(Jarvis)就配置好了。

运行贾维斯(Jarvis)

如果您选择下载了所有的模型和数据集(佩服您是条汉子),终端内启动服务:

python models_server.py --config config.yaml

随后会在系统的8004端口启动一个Flask服务进程,然后发起Http请求即可运行贾维斯(Jarvis):

curl --location 'http://localhost:8004/hugginggpt' \  
--header 'Content-Type: application/json' \  
--data '{  
    "messages": [  
        {  
            "role": "user",  
            "content": "please generate a video based on \"Spiderman is surfing\""  
        }  
    ]  
}'

这个的意思是让贾维斯(Jarvis)生成一段“蜘蛛侠在冲浪”的视频。

当然了,以笔者的硬件环境,是不可能跑起来的,所以可以对加载的模型适当“阉割”,在models_server.py文件的81行左右:

other_pipes = {  
            "nlpconnect/vit-gpt2-image-captioning":{  
                "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"),  
                "feature_extractor": ViTImageProcessor.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"),  
                "tokenizer": AutoTokenizer.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"),  
                "device": "cuda:0"  
            },  
            "Salesforce/blip-image-captioning-large": {  
                "model": BlipForConditionalGeneration.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"),  
                "processor": BlipProcessor.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"),  
                "device": "cuda:0"  
            },  
            "damo-vilab/text-to-video-ms-1.7b": {  
                "model": DiffusionPipeline.from_pretrained(f"{local_fold}/damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"),  
                "device": "cuda:0"  
            },  
            "facebook/maskformer-swin-large-ade": {  
                "model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_fold}/facebook/maskformer-swin-large-ade"),  
                "feature_extractor" : AutoFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade"),  
                "device": "cuda:0"  
            },  
            "microsoft/trocr-base-printed": {  
                "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"),  
                "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"),  
                "device": "cuda:0"  
            },  
            "microsoft/trocr-base-handwritten": {  
                "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"),  
                "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"),  
                "device": "cuda:0"  
            },  
            "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": {  
                "model": BaseModel.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k"),  
                "device": "cuda:0"  
            },  
            "espnet/kan-bayashi_ljspeech_vits": {  
                "model": Text2Speech.from_pretrained(f"espnet/kan-bayashi_ljspeech_vits"),  
                "device": "cuda:0"  
            },  
            "lambdalabs/sd-image-variations-diffusers": {  
                "model": DiffusionPipeline.from_pretrained(f"{local_fold}/lambdalabs/sd-image-variations-diffusers"), #torch_dtype=torch.float16  
                "device": "cuda:0"  
            },  
            "CompVis/stable-diffusion-v1-4": {  
                "model": DiffusionPipeline.from_pretrained(f"{local_fold}/CompVis/stable-diffusion-v1-4"),  
                "device": "cuda:0"  
            },  
            "stabilityai/stable-diffusion-2-1": {  
                "model": DiffusionPipeline.from_pretrained(f"{local_fold}/stabilityai/stable-diffusion-2-1"),  
                "device": "cuda:0"  
            },  
            "runwayml/stable-diffusion-v1-5": {  
                "model": DiffusionPipeline.from_pretrained(f"{local_fold}/runwayml/stable-diffusion-v1-5"),  
                "device": "cuda:0"  
            },  
            "microsoft/speecht5_tts":{  
                "processor": SpeechT5Processor.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"),  
                "model": SpeechT5ForTextToSpeech.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"),  
                "vocoder":  SpeechT5HifiGan.from_pretrained(f"{local_fold}/microsoft/speecht5_hifigan"),  
                "embeddings_dataset": load_dataset(f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"),  
                "device": "cuda:0"  
            },  
            "speechbrain/mtl-mimic-voicebank": {  
                "model": WaveformEnhancement.from_hparams(source="speechbrain/mtl-mimic-voicebank", savedir="models/mtl-mimic-voicebank"),  
                "device": "cuda:0"  
            },  
            "microsoft/speecht5_vc":{  
                "processor": SpeechT5Processor.from_pretrained(f"{local_fold}/microsoft/speecht5_vc"),  
                "model": SpeechT5ForSpeechToSpeech.from_pretrained(f"{local_fold}/microsoft/speecht5_vc"),  
                "vocoder": SpeechT5HifiGan.from_pretrained(f"{local_fold}/microsoft/speecht5_hifigan"),  
                "embeddings_dataset": load_dataset(f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"),  
                "device": "cuda:0"  
            },  
            "julien-c/wine-quality": {  
                "model": joblib.load(cached_download(hf_hub_url("julien-c/wine-quality", "sklearn_model.joblib")))  
            },  
            "facebook/timesformer-base-finetuned-k400": {  
                "processor": AutoImageProcessor.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"),  
                "model": TimesformerForVideoClassification.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"),  
                "device": "cuda:0"  
            },  
            "facebook/maskformer-swin-base-coco": {  
                "feature_extractor": MaskFormerFeatureExtractor.from_pretrained(f"{local_fold}/facebook/maskformer-swin-base-coco"),  
                "model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_fold}/facebook/maskformer-swin-base-coco"),  
                "device": "cuda:0"  
            },  
            "Intel/dpt-hybrid-midas": {  
                "model": DPTForDepthEstimation.from_pretrained(f"{local_fold}/Intel/dpt-hybrid-midas", low_cpu_mem_usage=True),  
                "feature_extractor": DPTFeatureExtractor.from_pretrained(f"{local_fold}/Intel/dpt-hybrid-midas"),  
                "device": "cuda:0"  
            }  
        }

把不需要的模型屏蔽即可。

与此同时,还可以不通过本地服务接口,修改config.yaml的inference_mode: huggingface

随后直接在终端运行ChatGPT版本的贾维斯:

cd server  
python3 awesome_chat.py --config config.yaml --mode cli

运行效果:

Welcome to Jarvis! A collaborative system that consists of an LLM as the controller and numerous expert models as collaborative executors. Jarvis can plan tasks, schedule Hugging Face models, generate friendly responses based on your requests, and help you with many things. Please enter your request (`exit` to exit).  
[ User ]: Given a collection of image A: /examples/cat.jpg, B: /examples/z3.jpg, C: /examples/z1.jpg, please tell me how many zebras in these picture?  
[ Jarvis ]: Based on your request, I have used several models to process the images you provided. For the image A: /examples/cat.jpg, I used the image-to-text model nlpconnect/vit-gpt2-image-captioning to generate the text "a cat sitting on a window sill looking out". Then I used the object-detection model facebook/detr-resnet-50 to generate the image with predicted box '/images/a3dc.jpg', which contains two objects with labels 'potted plant' and 'cat'. For the image B: /examples/z3.jpg, I used the image-to-text model nlpconnect/vit-gpt2-image-captioning to generate the text "two zebras standing in a field of dry grass". Then I used the object-detection model facebook/detr-resnet-50 to generate the image with predicted box '/images/f5df.jpg', which contains three objects with labels 'zebra'. For the image C: /examples/z1.jpg, I used the image-to-text model nlpconnect/vit-gpt2-image-captioning to generate the text "a zebra standing in a field of tall grass". Then I used the object-detection model facebook/detr-resnet-50 to generate the image with predicted box '/images/69c7.jpg', which contains one object with label 'zebra'. Finally, I used the canny-control model canny-control to generate the image '/images/7e18.png' based on the image /examples/savanna.jpg. Therefore, there are four zebras in these pictures. Is there anything else I can help you with?  
[ User ]: Please answer all the named entities in the sentence: Iron Man is a superhero appearing in American comic books published by Marvel Comics. The character was co-created by writer and editor Stan Lee, developed by scripter Larry Lieber, and designed by artists Don Heck and Jack Kirby.  
[ Jarvis ]: Sure, I understand your request. Based on the inference results of the models, I will answer your request step by step. Firstly, I used the token-classification model dslim/bert-base-NER to recognize the named entities in the sentence. The inference result is that the named entities are Iron Man, Stan Lee, Larry Lieber, Don Heck and Jack Kirby. Then, I used the question-answering model deepset/roberta-base-squad2 to answer your request. The inference result is that there is no output since the context cannot be empty. Therefore, I cannot make it. I hope this answer your request. Is there anything else I can help you with?  
[ User ]: Please generate a canny image based on /examples/savanna.jpg  
[ Jarvis ]: Sure. I have generated a canny image based on /examples/savanna.jpg. To do this, I first used the image-to-text model nlpconnect/vit-gpt2-image-captioning to generate the text description of the image, which is "a herd of giraffes and zebras grazing in a field". Then I used the canny-control model to generate the canny image of the original image, which is stored in the path "/images/1ea2.png". Finally, I used the canny-text-to-image model lllyasviel/sd-controlnet-canny to generate the canny image based on the text description and the canny image, which is stored in the path "/images/ba66.png". Do you need anything else?

可以理解为ChatGPT版本的文字生成图片,外面套了个贾维斯(Jarvis)的壳儿,演出效果满分。

结语

总的来说,和微软之前开源的“可视化图形ChatGPT”一样,此类项目的象征意义要远远大于现实意义。贾维斯(Jarvis)代表的是大多数技术同仁的共同愿景,对于这类人工智能技术的发展,可以肯定,但由于硬件门槛过高的原因,短期内还不能过于期待。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/801780.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电脑看不了视频怎么办?最新解决方法分享!

“昨天刚在电脑里保存了一些视频,但是都没法播放。之前下载在电脑里的视频也播放不了,这是怎么回事呢?电脑看不了视频,有什么方法可以解决吗?” 由于电脑的屏幕比较大,我们在观看视频时会有更好的体验感。因…

目标检测-击穿黑夜的PE-YOLO

前言 当前的目标检测模型在许多基准数据集上取得了良好的结果,但在暗光条件下检测目标仍然是一个巨大的挑战。为了解决这个问题,作者提出了金字塔增强网络(PENet)并将其与YOLOv3结合,构建了一个名为PE-YOLO的暗光目标检…

无涯教程-jQuery - ajaxSuccess( callback )方法函数

ajaxSuccess(回调)方法附加一个函数,只要AJAX请求成功完成,该函数便会执行。这是一个Ajax事件。 ajaxSuccess( callback ) - 语法 $(document).ajaxSuccess( callback ) 这是此方法使用的所有参数的描述- callback - 要执行的功能。事件对象&…

IMPDP和EXPDP的介绍和使用方法

数据泵的介绍 如何调用数据泵(1/2) 如何调用数据泵(1/2) Directory 操作模式 EXPDP的流程: 创建逻辑目录: * mkdir /home/oracle/app/oracle/oradata/mydata -p * CREATE DIRECTORY MYDATA AS "/home/oracle/app/oracle/oradata/mydata"ps: ORACLE 不会自动创建物理…

途乐证券:股利支付率高好还是低好?

股利付出率是指公司将赢利分配给股东的份额。在许多出资者眼中,高的股利付出率或许意味着公司具有安稳的现金流和盈余才能。但是,也有人以为低的股利付出率能够为公司供给更多的自在现金流,用于增加研发、扩张或并购等方面的出资。所以到底是…

MySQL~DQL查询语句

一、DQL:查询语句 1、排序查询 语法: order by 子句 ​ order by 排序字段1 排序方式1 ,排序字段2 排序方2... 排序方式: ASC:升序[默认] DESC:降序 在SQL语句中永远排序最后 注: 如果有多个排序条…

Angular —— Ng Serve Proxy让Ng Serve和你的服务器共存

ng serve是angular-cli的一个命令,用于在本地开发中启动一个测试服务器,自动编译和重新加载你的项目,并且在编译过程中,它会检查你代码中的一些错误,在控制台中提示你。 但是在实际项目,各个项目几乎必然会…

14 Linux实操篇-进程管理(重点)

14 Linux实操篇-进程管理(重点) 文章目录 14 Linux实操篇-进程管理(重点)14.1 进程的基本操作14.1.1 进程和程序14.1.2 父进程和子进程14.1.3 常见的Linux进程14.1.4 显示系统执行的进程-ps14.1.5 终止进程-kill/killall14.1.6 查…

应用在工业车间环境温湿度数据看板中的温度传感芯片

现在的制造生产行业不断的实现可视化生产,特别是一些特殊的生产行业需要对一些重点的场合或者生产环境进行环境监控,但是要是想要实时查看室内环境完全依靠人工来巡查是费时又费力的,要想解决这一难题还得引进现在的硬件环境数据监控看板,它是针对于现在制造业的一些特殊环境而…

EIGRP路由协议(红茶三杯CCNA)

EIGRP(Enhanced Interior Gateway Routing Protocol)增强型内部网关协议-Cisco独有 前身对比 特点: 1. 快速收敛-路由条目不过期,拥有备份路由 2. 高级距离矢量协议-具有距离矢量性和链路状态协议特征 3. 无类路由协议-可划分子…

P1118 [USACO06FEB] Backward Digit Sums G/S(dfs+思维杨辉三角)

1:题目分析 那么我只需要枚举1~n位置上的数,看哪个符合要求。 2:补充: 一个数只能用一次,因为结果是1~n的排列(最后组成肯定是1~n的每个数都出现过)。 3: ACcode(加注释)&#xff…

网格梯度离散化 gradient

欢迎关注更多精彩 关注我,学习常用算法与数据结构,一题多解,降维打击。 参考自polygon mesh proccessing这本书 重心坐标定理 定理证明点击前往 已经三角形三点上的函数值分别为gi,gj,gk。 可以利用插值得到g处的函数值。 g α g i β …

Redis优惠券秒杀超卖问题

Redis秒杀超卖问题 前言一、出现秒杀超卖的原因二、超卖解决方案使用乐观锁解决超卖问题程序中进行解决 前言 这是我认为b站上最好的redis教程,各方面讲解透彻,知识点覆盖比较全。 黑马redis视频链接:B站黑马redis教学视频 本文参考黑马redi…

多点测试激光焊缝透光率检测仪

聚丙烯(PP)是日常生活生产中常见的一种塑料,具有较高的耐冲击性,机械强度以及良好的抗腐蚀性,如能耐多种有机溶剂和酸碱腐蚀性液体,被广泛应用于家用电器的绝缘外壳、培养瓶、食品袋、饮料包装瓶等产品中。…

volley 学习笔记1--发送请求

一、概览 Volley 具有以下优势: 自动网络请求调度。 多个并发网络连接。 透明磁盘和具有标准 HTTP 缓存一致性的内存响应缓存。 支持请求优先级。 取消请求 API。您可以取消单个请求,也可以设置要取消的请求的时间段或范围。 可轻松自定义&#xff…

Docker学习笔记,包含docker安装、常用命令、dockerfile、docker-compose等等

😀😀😀创作不易,各位看官点赞收藏. 文章目录 Docker 学习笔记1、容器2、Docker 安装3、Docker 常用命令4、Docker 镜像5、自定义镜像5.1、镜像推送到阿里云5.2、镜像私有库 6、数据卷7、Docker 软件安装8、Docker File8.1、常见保…

如何为WordPress博客网站配置免费域名HTTPS证书

文章目录 如何为WordPress博客网站配置免费域名HTTPS证书前置条件:步骤1 申请免费的域名HTTPS证书步骤2 将HTTP证书配置到cpolar的配置文件中2.1 创建证书文件夹2.2 修改cpolar配置文件2.3 重启cpolar服务2.4 查看后台Wordpress隧道是否在线正常2.5 用浏览器打开站点…

php适合做erp吗?

首先我们来了解一下什么是ERP? ERP——Enterprise Resource Planning 企业资源计划系统,是指在信息技术基础上,以系统化的管理思想,为企业决策层及员工提供决策运行手段的管理平台。 ERP系统集中信息技术与先进的管理思想于一身…

HCIP——OSPF优化、拓展配置及选路规则

OSPF优化以及拓展配置 一、OSPF的优化1、汇总域间路由汇总域外路由汇总 2、特殊区域末梢区域完全末梢区域 NSSA非完全末梢区域Totally NSSA(完全的非完全末梢区域) 二、OSPF的拓展配置1、手工认证2、加快收敛3、沉默接口缺省路由 4、路由过滤5、路由控制5.1 修改优先级5.2 修改…

「2024」预备研究生mem-带绝对值的方程高次方程替代降次法

一、带绝对值的方程 二、高次方程替代降次法