rocketMq相关机制
topic读写队列
perm字段表示Topic的权限。有三个可选项。 2:禁写禁订阅,4:可订
阅,不能写,6:可写可订阅
这其中,写队列会真实的创建对应的存储文件,负责消息写入。而读队列会记录Consumer的Offset,负责消息读取。这其实是一种读写分离的思想。RocketMQ在最MessageQueue的路由策略时,就可以通过指向不同的队列来实现读写分离。
在往写队列里写Message时,会同步写入到一个对应的读队列中。
这时,如果写队列大于读队列,就会有一部分写队列无法写入到读队列中,这一部分的消息就无法被读取,就会造成消息丢失。–消息存入了,但是读不出来。
而如果反过来,写队列小于读队列,那就有一部分读队列里是没有消息写入的。如果有一个消费者被分配的是这些没有消息的读队列,那这些消费者就无法消费消息,造成消费者空转,极大的浪费性能。
从这里可以看到,写队列>读队列,会造成消息丢失,写队列<读队列,又会造成消费者空转。所以,在使用时,都是要求 写队列=读队列。
只有一种情况下可以考虑将读写队列设置为不一致,就是要对Topic的MessageQueue进行缩减的时候。例如原来四个队列,现在要缩减成两个队列。如果立即缩减读写队列,那么被缩减的MessageQueue上没有被消费的消息,就会丢失。这时,可以先缩减写队列,待空出来的读队列上的消息都被消费完了之后,再来缩减读队列,这样就可以比较平稳的实现队列缩减了
消息持久化
RocketMQ消息直接采用磁盘文件保存消息,默认路径在${user_home}/store目录。这些存储目录可以在broker.conf中自行指定。指定的配置在我的安装文档中有说明
存储文件主要分为三个部分:
- CommitLog:存储消息的元数据。所有消息都会顺序存入到CommitLog文件当中。CommitLog由多个文件组成,每个文件固定大小1G。以第一条消息的偏移量为文件名。
- ConsumerQueue:存储消息在CommitLog的索引。一个MessageQueue一个文件,记录当前MessageQueue被哪些消费者组消费到了哪一条CommitLog。
- IndexFile:为了消息查询提供了一种通过key或时间区间来查询消息的方法,这种通过IndexFile来查找消息的方法不影响发送与消费消息的主流程、
另外,还有几个辅助的存储文件:
- checkpoint:数据存盘检查点。里面主要记录commitlog文件、ConsumeQueue文件以及IndexFile文件最后一次刷盘的时间戳。
- config/*.json:这些文件是将RocketMQ的一些关键配置信息进行存盘保存。例如Topic配置、消费者组配置、消费者组消息偏移量Offset 等等一些信息。
- abort:这个文件是RocketMQ用来判断程序是否正常关闭的一个标识文件。正常情况下,会在启动时创建,而关闭服务时删除。但是如果遇到一些服务器宕机,或者kill -9这样一些非正常关闭服务的情况,这个abort文件就不会删除,因此RocketMQ就可以判断上一次服务是非正常关闭的,后续就会做一些数据恢复的操作
整体的消息存储结构如下图:
1、CommitLog文件存储所有消息实体。所有生产者发过来的消息,都会无差别的依次存储到Commitlog文件当中。这样的好处是可以减少查找目标文件的时间,让消息以最快的速度落盘。
文件结构:CommitLog的文件大小是固定的,但是其中存储的每个消息单元长度
是不固定的,具体格式可以参考org.apache.rocketmq.store.CommitLog
正因为消息的记录大小不固定,所以RocketMQ在每次存CommitLog文件时,都会去检查当前CommitLog文件空间是否足够,如果不够的话,就重新创建一个CommitLog文件。文件名为当前消息的偏移量。在后面的源码中去验证。
2、ConsumeQueue文件主要是加速消费者的消息索引。他的每个文件夹对应RocketMQ中的一个MessageQueue,文件夹下的文件记录了每个MessageQueue中的消息在CommitLog文件当中的偏移量。这样,消费者通过ComsumeQueue文件,就可以快速找到CommitLog文件中感兴趣的消息记录。而消费者在ConsumeQueue文件当中的消费进度,会保存在
config/consumerOffset.json文件当中。
文件结构:每个ConsumeQueue文件固定由30万个固定大小20byte的数据块组成,数据块的内容包括:msgPhyOffset(8byte,消息在文件中的起始位置)+msgSize(4byte,消息在文件中占用的长度)+msgTagCode(8byte,消息的tag的Hash值)。在ConsumeQueue.java当中有一个常量CQ_STORE_UNIT_SIZE=20,这个常量
就表示一个数据块的大小。
3、IndexFile文件主要是辅助消息检索。消费者进行消息消费时,通过ConsumeQueue文件就足够完成消息检索了,但是如果要按照MeessageId或者MessageKey来检索文件,比如RocketMQ管理控制台的消息轨迹功能,ConsumeQueue文件就不够用了。IndexFile文件就是用来辅助这类消息检索的。他的文件名比较特殊,不是以消息偏移量命名,而是用的时间命名。但是其实,他也是一个固定大小的文件。
文件结构:他的文件结构由 indexHeader(固定40byte)+ slot(固定500W个,每个固定20byte) + index(最多500W*4个,每个固定20byte) 三个部分组成。
indexFile介绍: https://blog.csdn.net/roykingw/article/details/120086520
过期文件删除
消息既然要持久化,就必须有对应的删除机制。RocketMQ内置了一套过期文件的删除机制。
首先:如何判断过期文件:
RocketMQ中,CommitLog文件和ConsumeQueue文件都是以偏移量命名,对于非当前写的文件,如果超过了一定的保留时间,那么这些文件都会被认为是过期文件,随时可以删除。这个保留时间就是在broker.conf中配置的fileReservedTime
属性。
注意,RocketMQ判断文件是否过期的唯一标准就是非当前写文件的保留时间,而并不关心文件当中的消息是否被消费过。所以,RocketMQ的消息堆积也是有时间限度的。
然后:何时删除过期文件:
RocketMQ内部有一个定时任务,对文件进行扫描,并且触发文件删除的操作。
用户可以指定文件删除操作的执行时间。在broker.conf中deleteWhen属性指定。
默认是凌晨四点。
另外,RocketMQ还会检查服务器的磁盘空间是否足够,如果磁盘空间的使用率达到一定的阈值,也会触发过期文件删除。所以RocketMQ官方就特别建议,broker的磁盘空间不要少于4G。
高效文件写
RocketMQ采用了类似于Kafka的文件存储机制,但是文件存储是一个比较重的操作,需要有非常多的设计才能保证频繁的文件读写场景下的高性能。
4.1 零拷贝技术加速文件读写
零拷贝(zero-copy)是操作系统层面提供的一种加速文件读写的操作机制,非常多的开源软件都在大量使用零拷贝,来提升IO操作的性能。对于Java应用层,对应着mmap和sendFile两种方式。接下来,咱们深入操作系统来详细理解一下零拷贝。
1:理解CPU拷贝和DMA拷贝
我们知道,操作系统对于内存空间,是分为用户态和内核态的。用户态的应用程序无法直接操作硬件,需要通过内核空间进行操作转换,才能真正操作硬件。这其实是为了保护操作系统的安全。正因为如此,应用程序需要与网卡、磁盘等硬件进行数据交互时,就需要在用户态和内核态之间来回的复制数据。而这些操作,原本都是需要由CPU来进行任务的分配、调度等管理步骤的,早先这些IO接口都是由CPU独立负责,所以当发生大规模的数据读写操作时,CPU的占用率会非常高。
之后,操作系统为了避免CPU完全被各种IO调用给占用,引入了DMA(直接存储器存储)。由DMA来负责这些频繁的IO操作。DMA是一套独立的指令集,不会占用CPU的计算资源。这样,CPU就不需要参与具体的数据复制的工作,只需要管理DMA的权限即可。
DMA拷贝极大的释放了CPU的性能,因此他的拷贝速度会比CPU拷贝要快很多。但是,其实DMA拷贝本身,也在不断优化。引入DMA拷贝之后,在读写请求的过程中,CPU不再需要参与具体的工作,DMA可以独立完成数据在系统内部的复制。但是,数据复制过程中,依然需要借助数据总进线。当系统内的IO操作过多时,还是会占用过多的数据总线,造成总线冲突,最终还是会影响数据读写性能。为了避免DMA总线冲突对性能的影响,后来又引入了Channel通道的方式。
Channel,是一个完全独立的处理器,专门负责IO操作。既然是处理器,Channel就有自己的IO指令,与CPU无关,他也更适合大型的IO操作,性能更高。
这也解释了,为什么Java应用层与零拷贝相关的操作都是通过Channel的子类实现的。这其实是借鉴了操作系统中的概念。而所谓的零拷贝技术,其实并不是不拷贝,而是要尽量减少CPU拷贝
/**
* @author :楼兰
* @description:NIO中MappedByteBuffer方式实现的零拷贝。将文件从用户态映射到内存,减少了一次拷贝。
* 适合于1~2G的小文件操作。
**/
public class MappedByteBufferDemo {
public static void main(String[] args) throws IOException {
RandomAccessFile randomAccessFile = new RandomAccessFile("MappedBF.txt", "rw");
//获取对应的通道
FileChannel channel = randomAccessFile.getChannel();
/**
* 参数1: FileChannel.MapMode.READ_WRITE 使用的读写模式
* 参数2: 0 : 可以直接修改的起始位置
* 参数3: 5: 是映射到内存的大小(不是索引位置) ,即将 1.txt 的多少个字节映射到内存
* 可以直接修改的范围就是 0-5
* 实际类型 DirectByteBuffer
*/
MappedByteBuffer mappedByteBuffer = channel.map(FileChannel.MapMode.READ_WRITE, 0, 5);
mappedByteBuffer.put(0, (byte) 'H');
mappedByteBuffer.put(3, (byte) '9');
// mappedByteBuffer.put(5, (byte) 'Y');//IndexOutOfBoundsException
randomAccessFile.close();
System.out.println("修改成功~~");
}
}
import java.io.*;
import java.nio.channels.FileChannel;
/**
* @author :楼兰
* @description: NIO中transfer方式实现的零拷贝。底层直接使用DMA,减少内核态与用户态之间的切换次数。
* 比较适合于大文件传输。
**/
public class FileTransferDemo {
public static void main(String[] args) throws IOException {
//文件太小,也没有跨网络,只能稍微体现出一点点零拷贝的优势。
File sourceFile = new File("NettyDemo/ludingji.txt");
System.out.println(sourceFile.getAbsolutePath()+";size = "+sourceFile.length());
long starttime = System.currentTimeMillis();
moveFileByStream(sourceFile,new File("NettyDemo/ludingji.stream.txt"));
long endtime = System.currentTimeMillis();
System.out.println("传统IO文件拷贝耗时:"+(endtime-starttime));
starttime = endtime;
moveFileByChannel(sourceFile,new File("NettyDemo/ludingji.channel.txt"));
endtime = System.currentTimeMillis();
System.out.println("零拷贝文件拷贝耗时:"+(endtime-starttime));
}
//NIO中transfer方式的零拷贝。这种拷贝方式不光拷贝硬盘文件,还可以用作底层硬件之间的拷贝实现。例如kafka中使用这种方式将消息从硬盘拷贝到网卡。
private static void moveFileByChannel(File sourceFile, File targetFile) {
try{
final FileInputStream sourceFis = new FileInputStream(sourceFile);
final FileChannel sourceReadChannel = sourceFis.getChannel();
final FileOutputStream targetFos = new FileOutputStream(targetFile);
final FileChannel targetWriteChannel = targetFos.getChannel();
sourceReadChannel.transferTo(0,sourceFile.length(),targetWriteChannel);
sourceFis.close();
targetFos.close();
}catch(Exception e){
e.printStackTrace();
}
}
//传统数据流拷贝方式
private static void moveFileByStream(File sourceFile, File targetFile) {
try{
BufferedReader sourceBr = new BufferedReader(new InputStreamReader(new FileInputStream(sourceFile)));
BufferedWriter targetBw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(targetFile)));
while (true){
final String line = sourceBr.readLine();
if(null == line || "".equals(line)){
break;
}
targetBw.write(line);
}
targetBw.flush();
sourceBr.close();
targetBw.close();
}catch (Exception e){
e.printStackTrace();
}
}
}
2:再来理解下mmap文件映射机制是怎么回事。
mmap机制的具体实现参见配套示例代码。主要是通过java.nio.channels.FileChannel的map方法完成映射。
以一次文件的读写操作为例,应用程序对磁盘文件的读与写,都需要经过内核态与用户态之间的状态切换,每次状态切换的过程中,就需要有大量的数据复制。
在这个过程中,总共需要进行四次数据拷贝。而磁盘与内核态之间的数据拷贝,在操作系统层面已经由CPU拷贝优化成了DMA拷贝。而内核态与用户态之间的拷贝依然是CPU拷贝。所以,在这个场景下,零拷贝技术优化的重点,就是内核态与用户态之间的这两次拷贝。
而mmap文件映射的方式,就是在用户态不再保存文件的内容,而只保存文件的映射,包括文件的内存起始地址,文件大小等。真实的数据,也不需要在用户态留存,可以直接通过操作映射,在内核态完成数据复制。
3:梳理下sendFile机制是怎么运行的。
sendFile机制的具体实现参见配套示例代码。主要是通过java.nio.channels.FileChannel的transferTo方法完成。
sourceReadChannel.transferTo(0,sourceFile.length(),targetWriteChannel);
还记得Kafka当中是如何使用零拷贝的吗?你应该看到过这样的例子,就是Kafka将文件从磁盘复制到网卡时,就大量的使用了零拷贝。百度去搜索一下零拷贝,铺天盖地的也都是拿这个场景在举例。
早期的sendfile实现机制其实还是依靠CPU进行页缓存与socket缓存区之间的数据拷贝。但是,在后期的不断改进过程中,sendfile优化了实现机制,在拷贝过程中,并不直接拷贝文件的内容,而是只拷贝一个带有文件位置和长度等信息的文件描述符FD,这样就大大减少了需要传递的数据。而真实的数据内容,会交由DMA控制器,从页缓存中打包异步发送到socket中。
为什么大家都喜欢用这个场景来举例呢?其实我们去看下Linux操作系统的man帮助手册就能看到一部分答案。使用指令man 2 sendfile就能看到Linux操作系统对于sendfile这个系统调用的手册。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lRsHESpk-1670329773786)(https://note.youdao.com/yws/public/resource/b1d25d692746087094a9eb2b2c3e4023/8ED9DFA1CF0E42908B5EEEAC455A481B?ynotemdtimestamp=1666956258105)]
2.6.33版本以前的Linux内核中,out_fd只能是一个socket,所以网上铺天盖地的老资料都是拿网卡来举例。但是现在版本已经没有了这个限制。
最后,sendfile机制在内核态直接完成了数据的复制,不需要用户态的参与,所以这种机制的传输效率是非常稳定的。sendfile机制非常适合大数据的复制转移。
4.2 顺序写加速文件写入磁盘
通常应用程序往磁盘写文件时,由于磁盘空间不是连续的,会有很多碎片。所以我们去写一个文件时,也就无法把一个文件写在一块连续的磁盘空间中,而需要在磁盘多个扇区之间进行大量的随机写。这个过程中有大量的寻址操作,会严重影响写数据的性能。而顺序写机制是在磁盘中提前申请一块连续的磁盘空间,每次写数据时,就可以避免这些寻址操作,直接在之前写入的地址后面接着写就行。
Kafka官方详细分析过顺序写的性能提升问题。Kafka官方曾说明,顺序写的性能基本能够达到内存级别。而如果配备固态硬盘,顺序写的性能甚至有可能超过写内存。而RocketMQ很大程度上借鉴了Kafka的这种思想。
例如可以看下org.apache.rocketmq.store.CommitLog#DefaultAppendMessageCallback中的doAppend方法。在这个方法中,会以追加的方式将消息先写入到一个堆外内存byteBuffer中,然后再通过fileChannel写入到磁盘。
4.3 刷盘机制保证消息不丢失
在操作系统层面,当应用程序写入一个文件时,文件内容并不会直接写入到硬件当中,而是会先写入到操作系统中的一个缓存PageCache中。PageCache缓存以4K大小为单位,缓存文件的具体内容。这些写入到PageCache中的文件,在应用程序看来,是已经完全落盘保存好了的,可以正常修改、复制等等。但是,本质上,PageCache依然是内存状态,所以一断电就会丢失。因此,需要将内存状态的数据写入到磁盘当中,这样数据才能真正完成持久化,断电也不会丢失。这个过程就称为刷盘。
PageCache是源源不断产生的,而Linux操作系统显然不可能时时刻刻往硬盘写文件。所以,操作系统只会在某些特定的时刻将PageCache写入到磁盘。例如当我们正常关机时,就会完成PageCache刷盘。另外,在Linux中,对于有数据修改的PageCache,会标记为Dirty(脏页)状态。当Dirty Page的比例达到一定的阈值时,就会触发一次刷盘操作。例如在Linux操作系统中,可以通过/proc/meminfo文件查看到Page Cache的状态。
[root@192-168-65-174 ~]# cat /proc/meminfo
MemTotal: 16266172 kB
.....
Cached: 923724 kB
.....
Dirty: 32 kB
Writeback: 0 kB
.....
Mapped: 133032 kB
.....
但是,只要操作系统的刷盘操作不是时时刻刻执行的,那么对于用户态的应用程序来说,那就避免不了非正常宕机时的数据丢失问题。因此,操作系统也提供了一个系统调用,应用程序可以自行调用这个系统调用,完成PageCache的强制刷盘。在Linux中是fsync,同样我们可以用man 2 fsync 指令查看。
RocketMQ对于何时进行刷盘,也设计了两种刷盘机制,同步刷盘和异步刷盘。
-
同步刷盘:
在返回写成功状态时,消息已经被写入磁盘。具体流程是,消息写入内存的PAGECACHE后,立刻通知刷盘线程刷盘, 然后等待刷盘完成,刷盘线程执行完成后唤醒等待的线程,返回消息写 成功的状态。
-
异步刷盘:
在返回写成功状态时,消息可能只是被写入了内存的PAGECACHE,写操作的返回快,吞吐量大;当内存里的消息量积累到一定程度时,统一触发写磁盘动作,快速写入。
-
配置方式:
刷盘方式是通过Broker配置文件里的flushDiskType 参数设置的,这个参数被配置成SYNC_FLUSH、ASYNC_FLUSH中的 一个。
同步刷盘机制会更频繁的调用fsync,所以吞吐量相比异步刷盘会降低,但是数据的安全性会得到提高。
消息主从复制
如果Broker以一个集群的方式部署,会有一个master节点和多个slave节点,消息需要从Master复制到Slave上。而消息复制的方式分为同步复制和异步复制。
- 同步复制:
同步复制是等Master和Slave都写入消息成功后才反馈给客户端写入成功的状态。
在同步复制下,如果Master节点故障,Slave上有全部的数据备份,这样容易恢复数据。但是同步复制会增大数据写入的延迟,降低系统的吞吐量。
- 异步复制:
异步复制是只要master写入消息成功,就反馈给客户端写入成功的状态。然后再异步的将消息复制给Slave节点。
在异步复制下,系统拥有较低的延迟和较高的吞吐量。但是如果master节点故障,而有些数据没有完成复制,就会造成数据丢失。
- 配置方式:
消息复制方式是通过Broker配置文件里的brokerRole参数进行设置的,这个参数可以被设置成ASYNC_MASTER、 SYNC_MASTER、SLAVE三个值中的一个。
负载均衡 --重点
6.1 Producer负载均衡
Producer发送消息时,默认会轮询目标Topic下的所有MessageQueue,并采用递增取模的方式往不同的MessageQueue上发送消息,以达到让消息平均落在不同的queue上的目的。而由于MessageQueue是分布在不同的Broker上的,所以消息也会发送到不同的broker上。
同时生产者在发送消息时,可以指定一个MessageQueueSelector。通过这个对象来将消息发送到自己指定的MessageQueue上。这样可以保证消息局部有序。
Consumer负载均衡
Consumer也是以MessageQueue为单位来进行负载均衡。分为集群模式和广播模式。
1、集群模式
在集群消费模式下,每条消息只需要投递到订阅这个topic的Consumer Group下的一个实例即可。RocketMQ采用主动拉取的方式拉取并消费消息,在拉取的时候需要明确指定拉取哪一条message queue。
而每当实例的数量有变更,都会触发一次所有实例的负载均衡,这时候会按照queue的数量和实例的数量平均分配queue给每个实例。
每次分配时,都会将MessageQueue和消费者ID进行排序后,再用不同的分配算法进行分配。内置的分配的算法共有六种,分别对应AllocateMessageQueueStrategy下的六种实现类,可以在consumer中直接set来指定。默认情况下使用的是最简单的平均分配策略。
- AllocateMachineRoomNearby: 将同机房的Consumer和Broker优先分配在一起。
这个策略可以通过一个machineRoomResolver对象来定制Consumer和Broker的机房解析规则。然后还需要引入另外一个分配策略来对同机房的Broker和Consumer进行分配。一般也就用简单的平均分配策略或者轮询分配策略。
感觉这东西挺鸡肋的,直接给个属性指定机房不是挺好的吗。
源码中有测试代码AllocateMachineRoomNearByTest。
在示例中:Broker的机房指定方式: messageQueue.getBrokerName().split(“-”)[0],而Consumer的机房指定方式:clientID.split(“-”)[0]
clinetID的构建方式:见ClientConfig.buildMQClientId方法。按他的测试代码应该是要把clientIP指定为IDC1-CID-0这样的形式。
- AllocateMessageQueueAveragely:平均分配。将所有MessageQueue平均分给每一个消费者
- AllocateMessageQueueAveragelyByCircle: 轮询分配。轮流的给一个消费者分配一个MessageQueue。
- AllocateMessageQueueByConfig: 不分配,直接指定一个messageQueue列表。类似于广播模式,直接指定所有队列。
- AllocateMessageQueueByMachineRoom:按逻辑机房的概念进行分配。又是对BrokerName和ConsumerIdc有定制化的配置。
- AllocateMessageQueueConsistentHash。源码中有测试代码AllocateMessageQueueConsitentHashTest。这个一致性哈希策略只需要指定一个虚拟节点数,是用的一个哈希环的算法,虚拟节点是为了让Hash数据在换上分布更为均匀。
例如平均分配时的分配情况是这样的:
2、广播模式
广播模式下,每一条消息都会投递给订阅了Topic的所有消费者实例,所以也就没有消息分配这一说。而在实现上,就是在Consumer分配Queue时,所有Consumer都分到所有的Queue。
广播模式实现的关键是将消费者的消费偏移量不再保存到broker当中,而是保存到客户端当中,由客户端自行维护自己的消费偏移量。
消息重试
首先对于广播模式的消息, 是不存在消息重试的机制的,即消息消费失败后,不会再重新进行发送,而只是继续消费新的消息。而对于普通的消息,当消费者消费消息失败后,你可以通过设置返回状态达到消息重试的结果。
7.1、如何让消息进行重试
集群消费方式下,消息消费失败后期望消息重试,需要在消息监听器接口的实现中明确进行配置。可以有三种配置方式:
- 返回Action.ReconsumeLater-推荐
- 返回null
- 抛出异常
public class MessageListenerImpl implements MessageListener {
@Override
public Action consume(Message message, ConsumeContext context) {
//处理消息
doConsumeMessage(message);
//方式1:返回 Action.ReconsumeLater,消息将重试
return Action.ReconsumeLater;
//方式2:返回 null,消息将重试
return null;
//方式3:直接抛出异常, 消息将重试
throw new RuntimeException("Consumer Message exceotion");
}
}
如果希望消费失败后不重试,可以直接返回Action.CommitMessage。
public class MessageListenerImpl implements MessageListener {
@Override
public Action consume(Message message, ConsumeContext context) {
try {
doConsumeMessage(message);
} catch (Throwable e) {
//捕获消费逻辑中的所有异常,并返回 Action.CommitMessage;
return Action.CommitMessage;
}
//消息处理正常,直接返回 Action.CommitMessage;
return Action.CommitMessage;
}
}
7.2、重试消息如何处理
重试的消息会进入一个 “%RETRY%”+ConsumeGroup 的队列中。
然后RocketMQ默认允许每条消息最多重试16次,每次重试的间隔时间如下:
重试次数 | 与上次重试的间隔时间 | 重试次数 | 与上次重试的间隔时间 |
---|---|---|---|
1 | 10 秒 | 9 | 7 分钟 |
2 | 30 秒 | 10 | 8 分钟 |
3 | 1 分钟 | 11 | 9 分钟 |
4 | 2 分钟 | 12 | 10 分钟 |
5 | 3 分钟 | 13 | 20 分钟 |
6 | 4 分钟 | 14 | 30 分钟 |
7 | 5 分钟 | 15 | 1 小时 |
8 | 6 分钟 | 16 | 2 小时 |
这个重试时间跟延迟消息的延迟级别是对应的。不过取的是延迟级别的后16级别。
messageDelayLevel=1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h
这个重试时间可以将源码中的org.apache.rocketmq.example.quickstart.Consumer里的消息监听器返回状态改为RECONSUME_LATER测试一下。
重试次数:
如果消息重试16次后仍然失败,消息将不再投递。转为进入死信队列。
另外一条消息无论重试多少次,这些重试消息的MessageId始终都是一样的。
然后关于这个重试次数,RocketMQ可以进行定制。例如通过consumer.setMaxReconsumeTimes(20);将重试次数设定为20次。当定制的重试次数超过16次后,消息的重试时间间隔均为2小时。
关于MessageId:
在老版本的RocketMQ中,一条消息无论重试多少次,这些重试消息的MessageId始终都是一样的。
但是在4.9.1版本中,每次重试MessageId都会重建。
配置覆盖:
消息最大重试次数的设置对相同GroupID下的所有Consumer实例有效。并且最后启动的Consumer会覆盖之前启动的Consumer的配置。
死信队列
当一条消息消费失败,RocketMQ就会自动进行消息重试。而如果消息超过最大重试次数,RocketMQ就会认为这个消息有问题。但是此时,RocketMQ不会立刻将这个有问题的消息丢弃,而会将其发送到这个消费者组对应的一种特殊队列:死信队列。
RocketMQ默认的重试次数是16次。见源码org.apache.rocketmq.common.subscription.SubscriptionGroupConfig中的retryMaxTimes属性。
这个重试次数可以在消费者端进行配置。 例如 DefaultMQPushConsumer实例中有个setMaxReconsumeTimes方法指定重试次数。
死信队列的名称是%DLQ%+ConsumGroup
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vLzyUpi1-1670329773787)(https://note.youdao.com/yws/public/resource/b1d25d692746087094a9eb2b2c3e4023/DD01D097DFB34D1B926390E18C500742?ynotemdtimestamp=1666958674823)]
死信队列的特征:
- 一个死信队列对应一个ConsumGroup,而不是对应某个消费者实例。
- 如果一个ConsumeGroup没有产生死信队列,RocketMQ就不会为其创建相应的死信队列。
- 一个死信队列包含了这个ConsumeGroup里的所有死信消息,而不区分该消息属于哪个Topic。
- 死信队列中的消息不会再被消费者正常消费。
- 死信队列的有效期跟正常消息相同。默认3天,对应broker.conf中的fileReservedTime属性。超过这个最长时间的消息都会被删除,而不管消息是否消费过。
通常,一条消息进入了死信队列,意味着消息在消费处理的过程中出现了比较严重的错误,并且无法自行恢复。此时,一般需要人工去查看死信队列中的消息,对错误原因进行排查。然后对死信消息进行处理,比如转发到正常的Topic重新进行消费,或者丢弃。
注:默认创建出来的死信队列,他里面的消息是无法读取的,在控制台和消费者中都无法读取。这是因为这些默认的死信队列,他们的权限perm被设置成了2:禁读(这个权限有三种 2:禁读,4:禁写,6:可读可写)。需要手动将死信队列的权限配置成6,才能被消费(可以通过mqadmin指定或者web控制台)。
消息幂等
阿里云商用版消息幂等文档:https://help.aliyun.com/document_detail/44397.html
幂等的概念
在MQ系统中,对于消息幂等有三种实现语义:
- at most once 最多一次:每条消息最多只会被消费一次
- at least once 至少一次:每条消息至少会被消费一次
- exactly once 刚刚好一次:每条消息都只会确定的消费一次
这三种语义都有他适用的业务场景。
其中,at most once是最好保证的。RocketMQ中可以直接用异步发送、sendOneWay等方式就可以保证。
而at least once这个语义,RocketMQ也有同步发送、事务消息等很多方式能够保证。
而这个exactly once是MQ中最理想也是最难保证的一种语义,需要有非常精细的设计才行。RocketMQ只能保证at least once,保证不了exactly once。所以,使用RocketMQ时,需要由业务系统自行保证消息的幂等性。
关于这个问题,官网上有明确的回答:
4. Are messages delivered exactly once?
RocketMQ ensures that all messages are delivered at least once. In most cases, the messages are not repeated.
但是,对于exactly once语义,阿里云上的商业版RocketMQ是明确有API支持的,至于如何实现的,就不得而知了。
消息幂等的必要性
在互联网应用中,尤其在网络不稳定的情况下,消息队列 RocketMQ 的消息有可能会出现重复,这个重复简单可以概括为以下情况:
-
发送时消息重复
当一条消息已被成功发送到服务端并完成持久化,此时出现了网络闪断或者客户端宕机,导致服务端对客户端应答失败。 如果此时生产者意识到消息发送失败并尝试再次发送消息,消费者后续会收到两条内容相同并且 Message ID 也相同的消息。
-
投递时消息重复
消息消费的场景下,消息已投递到消费者并完成业务处理,当客户端给服务端反馈应答的时候网络闪断。 为了保证消息至少被消费一次,消息队列 RocketMQ 的服务端将在网络恢复后再次尝试投递之前已被处理过的消息,消费者后续会收到两条内容相同并且 Message ID 也相同的消息。
-
负载均衡时消息重复(包括但不限于网络抖动、Broker 重启以及订阅方应用重启)
当消息队列 RocketMQ 的 Broker 或客户端重启、扩容或缩容时,会触发 Rebalance,此时消费者可能会收到重复消息。
处理方式
从上面的分析中,我们知道,在RocketMQ中,是无法保证每个消息只被投递一次的,所以要在业务上自行来保证消息消费的幂等性。
而要处理这个问题,RocketMQ的每条消息都有一个唯一的MessageId,这个参数在多次投递的过程中是不会改变的,所以业务上可以用这个MessageId来作为判断幂等的关键依据。
但是,这个MessageId是无法保证全局唯一的,也会有冲突的情况。所以在一些对幂等性要求严格的场景,最好是使用业务上唯一的一个标识比较靠谱。例如订单ID。而这个业务标识可以使用Message的Key来进行传递。
关联信息
- 关联的主题:
- 上一篇:
- 下一篇:
- image: 20221028/1
- 转载自:https://note.youdao.com/ynoteshare/index.html?id=b1d25d692746087094a9eb2b2c3e4023&type=note&_time=1666956256784