SOC FPGA之HPS模型设计(一)

news2024/11/27 22:42:56

目录

一、建立HPS硬件系统模型

1.1 GHRD

1.2 从0开始搭建HPS

1.2.1 FPGA Interfaces

1.2.1.1 General

1.2.1.2 AXI Bridge

1.2.1.3 FPGA-to-HPS SDRAM Interface

1.2.1.4 DMA Peripheral Request

1.2.1.5 Interrupts

1.2.1.6 EMAC ptp interface

1.2.2 Peripheral Pin Multiplexing

1.2.3 HPS Clocks

1.2.3.1 Input Clocks

1.2.3.2 Output Clocks

1.2.4 SDRAM

1.2.4.1 PHY Settings

1.2.4.2 Memory Parameters

1.2.4.3 Memory Timing

1.2.4.4 Board Settings

1.3 添加其他组件

1.4 产生Qsys系统

1.5 编译Quartus工程

1.6 硬件系统外设的输入/输出测试

1.7 相关代码


一、建立HPS硬件系统模型

建立HPS硬件模型有两种方式,一种是在GHRD中添加或修改,另外一种是从0开始搭建HPS

1.1 GHRD

GSRD(Golden System Reference Design,  黄金系统参考设计)包含:

  • GHRD(Golden Hardware Reference Design,  黄金硬件参考设计)
  • 基于U-Boot的Bootloader参考
  • Linux BSP参考
  • Linux应用程序示例

其中GHRD包含 Cyclone V SoC / Arria V SoC Development Kit的完整HPS设计,如双核ARM Cortex-A9 MPCore HPS、用户按键输入(PIO Buttion)、用户拨码开关输入(PIO DIPSW)、LED输出(PIO LED)、64KB片上存储器、JTAG-to-Avalon主接口连接桥(JTAG Master)、JATG-UART调试模块、中断捕获器(Interrupt Capturer)及系统ID(SysID)等。使用时只需在其中添加或修改所需的内容即可。

1.2 从0开始搭建HPS

在Quartus中创建工程HPS_Qsys_Prj,进入Platform Designer,添加Hard Processor System组件

1.2.1 FPGA Interfaces

在FPGA Interfaces标签设置页有General、AXI Bridges、FPGA-to-HPS SDRAM Interface、Resets、DMA Peripheral Request、Interrupts、EMAC ptp Interface

1.2.1.1 General

当General中某些选项被选中,相应的接口会出现在HPS模块中

参数名描述
Enable MPU standby and event signals

通知FPGA接口微处理器单元(MPU)处于待机模式;

可以从等待事件(WFE)状态唤醒一个MPCore处理器

Enable general purpose signals在SOC器件的HPS部分,启用FPGA与FPGA管理器之间的一组32位的单向普通目的接口
Enable Debug APB interface启用对FPGA的调试接口,允许在HPS中访问调试组件
Enable System Trace Macrocell hardware events启用系统跟踪单元(STM)硬件事件,允许FPGA中的逻辑向跟踪过程插入信息
Enable FPGA Cross Trigger Interface启用交叉触发器接口(CTI),允许出发Source/Sink与出发的交叉触发(ECT)相连
Enable FPGA Trace Port Interface Unit启用跟踪端口接口单元(TPIU)与FPGA逻辑之间的一个接口。TPIU是片上跟踪源与某个跟踪端口之间的桥梁
Enable FPGA Trace Port Alternate FPGA Interface当启用跟踪端口时,会创建一个与Arria 10跟踪接口兼容的接口
Enable boot from fpga signals启用HPS的一个输入信号,表明是否片上RAM中的preloader可以使用
Enable HLGPI Interface启用HPS的GPIO

1.2.1.2 AXI Bridge

FPGA-to-HPS interface width和HPS-to-FPGA interface width可选Unused、32-bit、64-bit和128-bit,即FPGA2HPS接口位宽和HPS2FPGA接口位宽

 

Lightweight HPS-to-FPGA interface width可选32-bit、Unused,即轻量级LWHPS2FPGA接口位宽。

1.2.1.3 FPGA-to-HPS SDRAM Interface

可以通过添加一个或多个SDRAM从端口(最多6个)让FPGA来访问HPS SDRAM子系统,其数据宽度可选32、64、128或256位,接口类型可选AXI-3、双向Avalon-MM、只写Avalon-MM、只读Avalon-MM。

 1.2.1.4 Resets

参数名参数描述
Enable HPS-to-FPGA cold reset output启用HPS2FPGA接口得冷启动输出
Enable HPS warm reset handshake signals启用一组附加的复位握手信号,允许软件通知HPS在其安全时开启一个FPGA结构中的热复位信号
Enable FPGA-to-HPS debug reset request启用FPGA2HPS调试复位请求接口
Enable FPGA-to-HPS warm reset request启用FPGA2HPS热复位请求接口
Enable FPGA-to-HPS cold reset request启用FPGA2HPS冷复位请求接口

1.2.1.4 DMA Peripheral Request

单独启用每个DMA控制器外设请求ID(Peripheral Request ID),每个请求ID可以使能连接FPGA的8个逻辑DMA通道中对应的通道接口。外设请求ID[4-7]是与CAN控制器共用。

1.2.1.5 Interrupts

对不同中断使能,勾选Enable FPGA-to-HPS Interrupts则启用HPS中FPGA对MPU的中断信号,下方则是HPS中的每个外设提供给FPGA的中断信号

1.2.1.6 EMAC ptp interface

Enable EMAC Precision Time Protocol(PTP) FPGA Interface,启用EMACO精确时间协议 (PTP) FPGA接口,当EMAC通过Pinmux连接到HPS I/O时,可通过FPGA访问IEEE 1588精密时间协议(PTP)接口。当EMAC连接到FPGA时,PTP信号可用。

1.2.2 Peripheral Pin Multiplexing

Peripheral Pin Multiplexing标签页包含了HPS所有可用外设的参数设置,通过选择HPS I/O设置可用启用对应的外设。当启用某个外设时,还需要设置其相应的工作模式。将鼠标放到相应的外设模式(mode)设置选项位置几秒时间,即可出现一个下拉列表,下拉列表给出了外设工作模式下的引脚定义。引脚复用设置应该与所用SOC FPGA开发板上的实际外设连接相匹配。

 在最下方的Peripherals Mux Table中列出了HPS外设的引脚分配情况,包括没有分配给任何外设的引脚,可以将其作为普通目的I/O(GPIO)使用,点击相对应的后面的GPIO即可。

1.2.3 HPS Clocks

HPS Clocks包括Input Clocks和Output Clocks

注意:这里设置的时钟频率是指期望的最高频率,实际时钟频率可以通过MPU上的软件对寄存器的设置进行修改,这里设置的时钟频率将出现在Qsys产生的Synopsys设计约束文件(.sdc)中。

1.2.3.1 Input Clocks

External Clock Sources用于设置E0SC的时钟频率

FPGA-to-HPS PLL Reference Clocks用于启用HPS SDRAM PLL提供参考时钟的FPGA接口、启用HPS外设PLL提供参考时钟的FPGA接口

Peripheral FPGA Clocks用于设置HPS外设的时钟频率,但需要先设置HPS外设在FPGA可以(即相应外设的引脚复用选择FPGA)

1.2.3.2 Output Clocks

Clock Sources设置时钟源

Main PLL Output Clocks - Desired Frequencies主锁相环输出时钟-所需频率

Peripheral PLL Output Clocks - Desired frequencies外围锁相环输出时钟-所需频率

HPS-to-FPGA User Clocks,用户时钟

参数名称参数描述
Enable HPS-to-FPGA user 0 clock启用HPS到FPGA的主PLL
Enable HPS-to-FPGA user 1 clock启用HPS到FPGA的外设PLL
Enable HPS-to-FPGA user 2 clock启用HPS到FPGA的SDRAM PLL

1.2.4 SDRAM

HPS支持DDR2、DDR3、LPDDR2协议的存储器接口

1.2.4.1 PHY Settings

Memory clock frequency设置存储器芯片的时钟频率,依据DDR3芯片手册设置

Supply Voltage电源电压,依据DDR3芯片手册选择

1.2.4.2 Memory Parameters

根据DDR3芯片手册中的参数设置Memory Parameters

1.2.4.3 Memory Timing

根据DDR3芯片手册中的相关参数验证Memory Timing页面中的时序参数

1.2.4.4 Board Settings

Setup and Hold DeratingIntersymbol Interference可以选择Use Altera's default settings,也可以根据芯片手册中的相关参数进行设置

需要根据开发板参数设置Board Skews,SDRAM利用这些参数校准I/O延时以及FIFO设置来补偿板级、FPGA部分或存储器件的漂移时间

 所有设置完成后点击右下角finish,将h2f_reset引出,将三个clock连接clk

1.3 添加其他组件

添加On-chip Memory、两个JTAG to Avalon Master Bridge、System ID Peripheral、JTAG UART、LED PIO、拨码开关PIO、按键PIO、自定义中断捕获模块

 

 自定义中断捕获模块

module intr_capturer #(
  parameter NUM_INTR = 32
  // active high level interrupt is expected for the input of this capturer module
)(
  input                clk,
  input                rst_n,
  input [NUM_INTR-1:0] interrupt_in,
  //input [31:0]         wrdata,
  input                addr,
  input                read,
  output [31:0]        rddata
);

  reg  [NUM_INTR-1:0]  interrupt_reg;
  reg  [31:0]          readdata_with_waitstate;
  wire [31:0]          act_readdata;
  wire [31:0]          readdata_lower_intr;
  wire [31:0]          readdata_higher_intr;
  wire                 access_lower_32;
  wire                 access_higher_32;

  always @(posedge clk or negedge rst_n) begin
    if (!rst_n) interrupt_reg <= 'b0;
    else        interrupt_reg <= interrupt_in;
    end

  generate
  if (NUM_INTR>32) begin : two_intr_reg_needed
    assign access_higher_32     = read & (addr == 1);
    
    assign readdata_lower_intr  = interrupt_reg[31:0] & {(32){access_lower_32}};
    assign readdata_higher_intr = interrupt_reg[NUM_INTR-1:32] & {(NUM_INTR-32){access_higher_32}};
    end
  else begin : only_1_reg
    assign readdata_lower_intr  = interrupt_reg & {(NUM_INTR){access_lower_32}};
    assign readdata_higher_intr = {32{1'b0}};
    end
  endgenerate

  assign access_lower_32 = read & (addr == 0);
  assign act_readdata = readdata_lower_intr | readdata_higher_intr;
  assign rddata = readdata_with_waitstate;

  always @(posedge clk or negedge rst_n) begin
    if (!rst_n) readdata_with_waitstate <= 32'b0;
    else        readdata_with_waitstate <= act_readdata;
    end
  
endmodule

1.4 产生Qsys系统

连线、设置中断、手动分配相应外设的基地址

产生Qsys系统

Qsys将产生指定格式的硬件描述语言(HDL)文件用于Quartus工程编译,同时产生一组与硬件系统定义相关的文件,包括定义了选定的HPS外设默认引脚分配的Tcl(Tool Command Language)文件,定义了HPS与FPGA中多端口存储器控制器的Tcl文件,定义了系统所用IP和用于TimeQuest时序约束的QIP文件,可以在synthesis目录找到。

1.5 编译Quartus工程

在Quartus的工程中添加soc_system.qip和soc_system.v文件

点击工具栏中的File->New->Block Diagram/Schematic File,新建一个原理图文件

再右键点击原理图空白处选择Insert->Symbol,将soc_system添加入原理图文件中,右键点击soc_system->Generate Pins for Symbol Ports,为元件添加输入/输出端口

将两处hps_0_h2f_reset的输出(命名为hps_fpga_reset_n)连接到系统的复位reset信号上,然后保存

 添加顶层文件

module HPS_Qsys_prj(
///

	 
		HPS Interface			


		
//		input  wire        reset_reset_n,                         //           reset.reset_n
//		input  wire        clk_clk,                               //             clk.clk
		output wire [14:0] memory_mem_a,                          //          memory.mem_a
		output wire [2:0]  memory_mem_ba,                         //                .mem_ba
		output wire        memory_mem_ck,                         //                .mem_ck
		output wire        memory_mem_ck_n,                       //                .mem_ck_n
		output wire        memory_mem_cke,                        //                .mem_cke
		output wire        memory_mem_cs_n,                       //                .mem_cs_n
		output wire        memory_mem_ras_n,                      //                .mem_ras_n
		output wire        memory_mem_cas_n,                      //                .mem_cas_n
		output wire        memory_mem_we_n,                       //                .mem_we_n
		output wire        memory_mem_reset_n,                    //                .mem_reset_n
		inout  wire [31:0] memory_mem_dq,                         //                .mem_dq
		inout  wire [3:0]  memory_mem_dqs,                        //                .mem_dqs
		inout  wire [3:0]  memory_mem_dqs_n,                      //                .mem_dqs_n
		output wire        memory_mem_odt,                        //                .mem_odt
		output wire [3:0]  memory_mem_dm,                         //                .mem_dm
		input  wire        memory_oct_rzqin,                      //                .oct_rzqin
		output wire        hps_0_hps_io_hps_io_emac1_inst_TX_CLK, //    hps_0_hps_io.hps_io_emac1_inst_TX_CLK
		output wire        hps_0_hps_io_hps_io_emac1_inst_TXD0,   //                .hps_io_emac1_inst_TXD0
		output wire        hps_0_hps_io_hps_io_emac1_inst_TXD1,   //                .hps_io_emac1_inst_TXD1
		output wire        hps_0_hps_io_hps_io_emac1_inst_TXD2,   //                .hps_io_emac1_inst_TXD2
		output wire        hps_0_hps_io_hps_io_emac1_inst_TXD3,   //                .hps_io_emac1_inst_TXD3
		input  wire        hps_0_hps_io_hps_io_emac1_inst_RXD0,   //                .hps_io_emac1_inst_RXD0
		inout  wire        hps_0_hps_io_hps_io_emac1_inst_MDIO,   //                .hps_io_emac1_inst_MDIO
		output wire        hps_0_hps_io_hps_io_emac1_inst_MDC,    //                .hps_io_emac1_inst_MDC
		input  wire        hps_0_hps_io_hps_io_emac1_inst_RX_CTL, //                .hps_io_emac1_inst_RX_CTL
		output wire        hps_0_hps_io_hps_io_emac1_inst_TX_CTL, //                .hps_io_emac1_inst_TX_CTL
		input  wire        hps_0_hps_io_hps_io_emac1_inst_RX_CLK, //                .hps_io_emac1_inst_RX_CLK
		input  wire        hps_0_hps_io_hps_io_emac1_inst_RXD1,   //                .hps_io_emac1_inst_RXD1
		input  wire        hps_0_hps_io_hps_io_emac1_inst_RXD2,   //                .hps_io_emac1_inst_RXD2
		input  wire        hps_0_hps_io_hps_io_emac1_inst_RXD3,   //                .hps_io_emac1_inst_RXD3
		inout  wire        hps_0_hps_io_hps_io_qspi_inst_IO0,     //                .hps_io_qspi_inst_IO0
		inout  wire        hps_0_hps_io_hps_io_qspi_inst_IO1,     //                .hps_io_qspi_inst_IO1
		inout  wire        hps_0_hps_io_hps_io_qspi_inst_IO2,     //                .hps_io_qspi_inst_IO2
		inout  wire        hps_0_hps_io_hps_io_qspi_inst_IO3,     //                .hps_io_qspi_inst_IO3
		output wire        hps_0_hps_io_hps_io_qspi_inst_SS0,     //                .hps_io_qspi_inst_SS0
		output wire        hps_0_hps_io_hps_io_qspi_inst_CLK,     //                .hps_io_qspi_inst_CLK
		inout  wire        hps_0_hps_io_hps_io_sdio_inst_CMD,     //                .hps_io_sdio_inst_CMD
		inout  wire        hps_0_hps_io_hps_io_sdio_inst_D0,      //                .hps_io_sdio_inst_D0
		inout  wire        hps_0_hps_io_hps_io_sdio_inst_D1,      //                .hps_io_sdio_inst_D1
		output wire        hps_0_hps_io_hps_io_sdio_inst_CLK,     //                .hps_io_sdio_inst_CLK
		inout  wire        hps_0_hps_io_hps_io_sdio_inst_D2,      //                .hps_io_sdio_inst_D2
		inout  wire        hps_0_hps_io_hps_io_sdio_inst_D3,      //                .hps_io_sdio_inst_D3
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D0,      //                .hps_io_usb1_inst_D0
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D1,      //                .hps_io_usb1_inst_D1
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D2,      //                .hps_io_usb1_inst_D2
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D3,      //                .hps_io_usb1_inst_D3
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D4,      //                .hps_io_usb1_inst_D4
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D5,      //                .hps_io_usb1_inst_D5
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D6,      //                .hps_io_usb1_inst_D6
		inout  wire        hps_0_hps_io_hps_io_usb1_inst_D7,      //                .hps_io_usb1_inst_D7
		input  wire        hps_0_hps_io_hps_io_usb1_inst_CLK,     //                .hps_io_usb1_inst_CLK
		output wire        hps_0_hps_io_hps_io_usb1_inst_STP,     //                .hps_io_usb1_inst_STP
		input  wire        hps_0_hps_io_hps_io_usb1_inst_DIR,     //                .hps_io_usb1_inst_DIR
		input  wire        hps_0_hps_io_hps_io_usb1_inst_NXT,     //                .hps_io_usb1_inst_NXT
		output wire        hps_0_hps_io_hps_io_spim0_inst_CLK,    //                .hps_io_spim0_inst_CLK
		output wire        hps_0_hps_io_hps_io_spim0_inst_MOSI,   //                .hps_io_spim0_inst_MOSI
		input  wire        hps_0_hps_io_hps_io_spim0_inst_MISO,   //                .hps_io_spim0_inst_MISO
		output wire        hps_0_hps_io_hps_io_spim0_inst_SS0,    //                .hps_io_spim0_inst_SS0
		output wire        hps_0_hps_io_hps_io_spim1_inst_CLK,    //                .hps_io_spim1_inst_CLK
		output wire        hps_0_hps_io_hps_io_spim1_inst_MOSI,   //                .hps_io_spim1_inst_MOSI
		input  wire        hps_0_hps_io_hps_io_spim1_inst_MISO,   //                .hps_io_spim1_inst_MISO
		output wire        hps_0_hps_io_hps_io_spim1_inst_SS0,    //                .hps_io_spim1_inst_SS0
		input  wire        hps_0_hps_io_hps_io_uart0_inst_RX,     //                .hps_io_uart0_inst_RX
		output wire        hps_0_hps_io_hps_io_uart0_inst_TX,     //                .hps_io_uart0_inst_TX
		inout  wire        hps_0_hps_io_hps_io_i2c1_inst_SDA,     //                .hps_io_i2c1_inst_SDA
		inout  wire        hps_0_hps_io_hps_io_i2c1_inst_SCL,     //                .hps_io_i2c1_inst_SCL
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO0,  //                .hps_io_gpio_inst_GPIO0
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI1,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI2,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI3,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI4,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI5,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI6,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI7,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI8,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI9,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI10,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI11,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI12,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_HLGPI13,
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO09,  //                .hps_io_gpio_inst_GPIO09
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO35,  //                .hps_io_gpio_inst_GPIO35
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO48,  //                .hps_io_gpio_inst_GPIO48
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO53,  //                .hps_io_gpio_inst_GPIO53
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO54,  //                .hps_io_gpio_inst_GPIO54
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO55,  //                .hps_io_gpio_inst_GPIO55
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO56,  //                .hps_io_gpio_inst_GPIO56
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO61,  //                .hps_io_gpio_inst_GPIO61
		inout  wire        hps_0_hps_io_hps_io_gpio_inst_GPIO62,   //                .hps_io_gpio_inst_GPIO62




	 
		FPGA Interface			


								
	
	//FPGA-GPLL-CLK------------------------//X pins
   input          clk_100m_fpga,       //2.5V    //100 MHz (2nd copy to max)
   input          clk_50m_fpga,        //2.5V    //50MHz (2nd copy to max) 
	input          clk_top1,            //2.5V    //156.25 MHz adjustable
   input          clk_bot1,            //1.5V    //100 MHz ajustable
	input          fpga_resetn,          //2.5V    //FPGA Reset Pushbutton	

	 SiLabs Clock Generator I/F 	///  	   	   	   	   	   	
   output   wire  clk_i2c_sclk,             // I2C Clock 
   inout    wire  clk_i2c_sdat,             // I2C Data 
             
`ifdef user_peripheral
	//FPGA-User-IO-------------------------//14 pins //--------------------------
 	input	 [3:0]   user_dipsw_fpga,     //
	output [3:0]   user_led_fpga,       //
	input	 [3:0]   user_pb_fpga,        //
  	input  	wire  irda_rxd,				// IRDA Receive LED   
  	output  	wire  fan_ctrl				// control for fan
`endif
	
`ifdef ddr3
//FPGA-DDR3-400Mx32--------------------//74 pins //--------------------------
   output [14:0]  ddr3_fpga_a,         //SSTL15  //Address
   output [2:0]   ddr3_fpga_ba,        //SSTL15  //Bank Address
	output         ddr3_fpga_casn,      //SSTL15  //Column Address Strobe
	output         ddr3_fpga_cke,       //SSTL15  //Clock Enable
	output         ddr3_fpga_clk_n,     //SSTL15  //Diff Clock - Neg
	output         ddr3_fpga_clk_p,     //SSTL15  //Diff Clock - Pos
   output         ddr3_fpga_csn,       //SSTL15  //Chip Select
   output [3:0]   ddr3_fpga_dm,        //SSTL15  //Data Write Mask
   inout  [31:0]  ddr3_fpga_dq,        //SSTL15  //Data Bus
   inout  [3:0]   ddr3_fpga_dqs_n,     //SSTL15  //Diff Data Strobe - Neg
   inout  [3:0]   ddr3_fpga_dqs_p,     //SSTL15  //Diff Data Strobe - Pos
   output         ddr3_fpga_odt,       //SSTL15  //On-Die Termination Enable
   output          ddr3_fpga_rasn,      //SSTL15  //Row Address Strobe
   output          ddr3_fpga_resetn,    //SSTL15  //Reset
   output          ddr3_fpga_wen,       //SSTL15  //Write Enable
	input          ddr3_fpga_rzq,       //OCT_rzqin //On-die termination enable
//   input          oct_rdn,        		//SSTL15    //On-die termination enable
//   input          oct_rup,       		//SSTL15    //On-die termination enable
`endif

`ifdef temp_sense
 		 	Temp. Sensor I/F 	  	
		// 							SPI interface								//
   output   wire  temp_cs_n,				// Chip Select
   output   wire  temp_sclk,       			// Slave Clock 
   output   wire  temp_mosi,				// Data Out 
   input    wire  temp_miso,				// Data In
`endif

`ifdef vga
			VIDEO 	 			
   output 	wire  vga_clk,					// Video Clock
   output 	wire  vga_hs,					// Horizontal Synch
   output 	wire  vga_vs,					// Vertical Synch   	   	
   output   wire  [7:0] vga_r,				// Red 
   output   wire  [7:0] vga_g,				// Green
   output   wire  [7:0] vga_b,				// Blue	
   output 	wire  vga_blank_n,			// Composite Blank Control
   output 	wire  vga_sync_n,				// Composite Synch Control  	  
`endif

`ifdef audio
		AUDIO 	 			
   input 	wire  aud_adcdat,				// ADC Serial Data or I2C_SCLK
   input 	wire  aud_adclrck, 			// FDDR3e clock
   input 	wire  aud_bclk,				// Bit Clock 
   output 	wire  aud_dacdat,				// DAC Serial Data 
   inout 	wire  aud_daclrck,			// FDDR3e Clock
	output   wire  aud_i2c_sclk,                                       
	inout    wire  aud_i2c_sdat,                                          
	output   wire  aud_mute,                                      
	output   wire  aud_xck,    
`endif
	
`ifdef hsma
//HSMC-Port-A----------------------------------------------------
//	input                         [2:1]        hsmc_clkin_n,        
	input                         [2:1]        hsmc_clkin_p,        
//	output                        [2:1]        hsmc_clkout_n,        
	output                        [2:1]        hsmc_clkout_p,       
	input                                      hsmc_clk_in0,     
	output                                      hsmc_clk_out0,        
	inout                         [3:0]        hsmc_d,      
`ifdef HSMC_XCVR	
//	input                         [7:0]        hsmc_gxb_rx_n,        
	input                         [7:0]        hsmc_gxb_rx_p,       
//	output                        [7:0]        hsmc_gxb_tx_n,        
	output                        [7:0]        hsmc_gxb_tx_p,        
//	input                                      hsmc_ref_clk_n,        
	input                                      hsmc_ref_clk_p,        
`endif
//	input                         [16:0]       hsmc_rx_n,       
	input                         [16:0]       hsmc_rx_p,         
	output                                     hsmc_scl,        
	inout                                      hsmc_sda,        
//	output                         [16:0]       hsmc_tx_n,      
	output                         [16:0]       hsmc_tx_p      
 `endif

 	 QSPI Flash I/F 	///  	   	   	   	   	   	
   inout   wire  [3:0] fpga_epqc_data,     // Flash Data 
   output  wire  fpga_epqc_dclk,           // Data Clock  
   output  wire  fpga_epqc_ncso           // Chip Select
   
);
    
// internal wires and registers declaration
  wire [3:0] fpga_led_internal;
  wire       hps_fpga_reset_n;

// connection of internal logics
//  assign user_led_fpga = ~fpga_led_internal;
  assign user_led_fpga = fpga_led_internal;
	 
	 
    soc_system u0 (
        .clk_clk                         (clk_bot1),                         //             clk.clk
        .fpga_button_pio_export          (user_pb_fpga),          // fpga_button_pio.export
        .fpga_dipsw_pio_export           (user_dipsw_fpga),           //  fpga_dipsw_pio.export
        .fpga_led_pio_export             (fpga_led_internal),             //    fpga_led_pio.export
        .hps_0_h2f_reset_reset_n         (hps_fpga_reset_n),         // hps_0_h2f_reset.reset_n
        .hps_io_hps_io_emac1_inst_TX_CLK (hps_0_hps_io_hps_io_emac1_inst_TX_CLK), //          hps_io.hps_io_emac1_inst_TX_CLK
        .hps_io_hps_io_emac1_inst_TXD0   (hps_0_hps_io_hps_io_emac1_inst_TXD0),   //                .hps_io_emac1_inst_TXD0
        .hps_io_hps_io_emac1_inst_TXD1   (hps_0_hps_io_hps_io_emac1_inst_TXD1),   //                .hps_io_emac1_inst_TXD1
        .hps_io_hps_io_emac1_inst_TXD2   (hps_0_hps_io_hps_io_emac1_inst_TXD2),   //                .hps_io_emac1_inst_TXD2
        .hps_io_hps_io_emac1_inst_TXD3   (hps_0_hps_io_hps_io_emac1_inst_TXD3),   //                .hps_io_emac1_inst_TXD3
        .hps_io_hps_io_emac1_inst_RXD0   (hps_0_hps_io_hps_io_emac1_inst_RXD0),   //                .hps_io_emac1_inst_RXD0
        .hps_io_hps_io_emac1_inst_MDIO   (hps_0_hps_io_hps_io_emac1_inst_MDIO),   //                .hps_io_emac1_inst_MDIO
        .hps_io_hps_io_emac1_inst_MDC    (hps_0_hps_io_hps_io_emac1_inst_MDC),    //                .hps_io_emac1_inst_MDC
        .hps_io_hps_io_emac1_inst_RX_CTL (hps_0_hps_io_hps_io_emac1_inst_RX_CTL), //                .hps_io_emac1_inst_RX_CTL
        .hps_io_hps_io_emac1_inst_TX_CTL (hps_0_hps_io_hps_io_emac1_inst_TX_CTL), //                .hps_io_emac1_inst_TX_CTL
        .hps_io_hps_io_emac1_inst_RX_CLK (hps_0_hps_io_hps_io_emac1_inst_RX_CLK), //                .hps_io_emac1_inst_RX_CLK
        .hps_io_hps_io_emac1_inst_RXD1   (hps_0_hps_io_hps_io_emac1_inst_RXD1),   //                .hps_io_emac1_inst_RXD1
        .hps_io_hps_io_emac1_inst_RXD2   (hps_0_hps_io_hps_io_emac1_inst_RXD2),   //                .hps_io_emac1_inst_RXD2
        .hps_io_hps_io_emac1_inst_RXD3   (hps_0_hps_io_hps_io_emac1_inst_RXD3),   //                .hps_io_emac1_inst_RXD3
        .hps_io_hps_io_qspi_inst_IO0     (hps_0_hps_io_hps_io_qspi_inst_IO0),     //                .hps_io_qspi_inst_IO0
        .hps_io_hps_io_qspi_inst_IO1     (hps_0_hps_io_hps_io_qspi_inst_IO1),     //                .hps_io_qspi_inst_IO1
        .hps_io_hps_io_qspi_inst_IO2     (hps_0_hps_io_hps_io_qspi_inst_IO2),     //                .hps_io_qspi_inst_IO2
        .hps_io_hps_io_qspi_inst_IO3     (hps_0_hps_io_hps_io_qspi_inst_IO3),     //                .hps_io_qspi_inst_IO3
        .hps_io_hps_io_qspi_inst_SS0     (hps_0_hps_io_hps_io_qspi_inst_SS0),     //                .hps_io_qspi_inst_SS0
        .hps_io_hps_io_qspi_inst_CLK     (hps_0_hps_io_hps_io_qspi_inst_CLK),     //                .hps_io_qspi_inst_CLK
        .hps_io_hps_io_sdio_inst_CMD     (hps_0_hps_io_hps_io_sdio_inst_CMD),     //                .hps_io_sdio_inst_CMD
        .hps_io_hps_io_sdio_inst_D0      (hps_0_hps_io_hps_io_sdio_inst_D0),      //                .hps_io_sdio_inst_D0
        .hps_io_hps_io_sdio_inst_D1      (hps_0_hps_io_hps_io_sdio_inst_D1),      //                .hps_io_sdio_inst_D1
        .hps_io_hps_io_sdio_inst_CLK     (hps_0_hps_io_hps_io_sdio_inst_CLK),     //                .hps_io_sdio_inst_CLK
        .hps_io_hps_io_sdio_inst_D2      (hps_0_hps_io_hps_io_sdio_inst_D2),      //                .hps_io_sdio_inst_D2
        .hps_io_hps_io_sdio_inst_D3      (hps_0_hps_io_hps_io_sdio_inst_D3),      //                .hps_io_sdio_inst_D3
        .hps_io_hps_io_usb1_inst_D0      (hps_0_hps_io_hps_io_usb1_inst_D0),      //                .hps_io_usb1_inst_D0
        .hps_io_hps_io_usb1_inst_D1      (hps_0_hps_io_hps_io_usb1_inst_D1),      //                .hps_io_usb1_inst_D1
        .hps_io_hps_io_usb1_inst_D2      (hps_0_hps_io_hps_io_usb1_inst_D2),      //                .hps_io_usb1_inst_D2
        .hps_io_hps_io_usb1_inst_D3      (hps_0_hps_io_hps_io_usb1_inst_D3),      //                .hps_io_usb1_inst_D3
        .hps_io_hps_io_usb1_inst_D4      (hps_0_hps_io_hps_io_usb1_inst_D4),      //                .hps_io_usb1_inst_D4
        .hps_io_hps_io_usb1_inst_D5      (hps_0_hps_io_hps_io_usb1_inst_D5),      //                .hps_io_usb1_inst_D5
        .hps_io_hps_io_usb1_inst_D6      (hps_0_hps_io_hps_io_usb1_inst_D6),      //                .hps_io_usb1_inst_D6
        .hps_io_hps_io_usb1_inst_D7      (hps_0_hps_io_hps_io_usb1_inst_D7),      //                .hps_io_usb1_inst_D7
        .hps_io_hps_io_usb1_inst_STP     (hps_0_hps_io_hps_io_usb1_inst_STP),     //                .hps_io_usb1_inst_STP
        .hps_io_hps_io_usb1_inst_DIR     (hps_0_hps_io_hps_io_usb1_inst_DIR),     //                .hps_io_usb1_inst_DIR
        .hps_io_hps_io_usb1_inst_NXT     (hps_0_hps_io_hps_io_usb1_inst_NXT),     //                .hps_io_usb1_inst_NXT
        .hps_io_hps_io_spim0_inst_CLK    (hps_0_hps_io_hps_io_spim0_inst_CLK),    //                .hps_io_spim0_inst_CLK
        .hps_io_hps_io_spim0_inst_MOSI   (hps_0_hps_io_hps_io_spim0_inst_MOSI),   //                .hps_io_spim0_inst_MOSI
        .hps_io_hps_io_spim0_inst_MISO   (hps_0_hps_io_hps_io_spim0_inst_MISO),   //                .hps_io_spim0_inst_MISO
        .hps_io_hps_io_spim0_inst_SS0    (hps_0_hps_io_hps_io_spim0_inst_SS0),    //                .hps_io_spim0_inst_SS0
        .hps_io_hps_io_spim1_inst_CLK    (hps_0_hps_io_hps_io_spim1_inst_CLK),    //                .hps_io_spim1_inst_CLK
        .hps_io_hps_io_spim1_inst_MOSI   (hps_0_hps_io_hps_io_spim1_inst_MOSI),   //                .hps_io_spim1_inst_MOSI
        .hps_io_hps_io_spim1_inst_MISO   (hps_0_hps_io_hps_io_spim1_inst_MISO),   //                .hps_io_spim1_inst_MISO
        .hps_io_hps_io_spim1_inst_SS0    (hps_0_hps_io_hps_io_spim1_inst_SS0),    //                .hps_io_spim1_inst_SS0
        .hps_io_hps_io_uart0_inst_RX     (hps_0_hps_io_hps_io_uart0_inst_RX),     //                .hps_io_uart0_inst_RX
        .hps_io_hps_io_uart0_inst_TX     (hps_0_hps_io_hps_io_uart0_inst_TX),     //                .hps_io_uart0_inst_TX
        .hps_io_hps_io_i2c1_inst_SDA     (hps_0_hps_io_hps_io_i2c1_inst_SDA),     //                .hps_io_i2c1_inst_SDA
        .hps_io_hps_io_i2c1_inst_SCL     (hps_0_hps_io_hps_io_i2c1_inst_SCL),     //                .hps_io_i2c1_inst_SCL
        .hps_io_hps_io_gpio_inst_HLGPI0  (hps_0_hps_io_hps_io_gpio_inst_GPIO0),  //                .hps_io_gpio_inst_HLGPI0
        .hps_io_hps_io_gpio_inst_HLGPI1  (hps_0_hps_io_hps_io_gpio_inst_HLGPI1),  //                .hps_io_gpio_inst_HLGPI1
        .hps_io_hps_io_gpio_inst_HLGPI2  (hps_0_hps_io_hps_io_gpio_inst_HLGPI2),  //                .hps_io_gpio_inst_HLGPI2
        .hps_io_hps_io_gpio_inst_HLGPI3  (hps_0_hps_io_hps_io_gpio_inst_HLGPI3),  //                .hps_io_gpio_inst_HLGPI3
        .hps_io_hps_io_gpio_inst_HLGPI4  (hps_0_hps_io_hps_io_gpio_inst_HLGPI4),  //                .hps_io_gpio_inst_HLGPI4
        .hps_io_hps_io_gpio_inst_HLGPI5  (hps_0_hps_io_hps_io_gpio_inst_HLGPI5),  //                .hps_io_gpio_inst_HLGPI5
        .hps_io_hps_io_gpio_inst_HLGPI6  (hps_0_hps_io_hps_io_gpio_inst_HLGPI6),  //                .hps_io_gpio_inst_HLGPI6
        .hps_io_hps_io_gpio_inst_HLGPI7  (hps_0_hps_io_hps_io_gpio_inst_HLGPI7),  //                .hps_io_gpio_inst_HLGPI7
        .hps_io_hps_io_gpio_inst_HLGPI8  (hps_0_hps_io_hps_io_gpio_inst_HLGPI8),  //                .hps_io_gpio_inst_HLGPI8
        .hps_io_hps_io_gpio_inst_HLGPI9  (hps_0_hps_io_hps_io_gpio_inst_HLGPI9),  //                .hps_io_gpio_inst_HLGPI9
        .hps_io_hps_io_gpio_inst_HLGPI10 (hps_0_hps_io_hps_io_gpio_inst_HLGPI10), //                .hps_io_gpio_inst_HLGPI10
        .hps_io_hps_io_gpio_inst_HLGPI11 (hps_0_hps_io_hps_io_gpio_inst_HLGPI11), //                .hps_io_gpio_inst_HLGPI11
        .hps_io_hps_io_gpio_inst_HLGPI12 (hps_0_hps_io_hps_io_gpio_inst_HLGPI12), //                .hps_io_gpio_inst_HLGPI12
        .hps_io_hps_io_gpio_inst_HLGPI13 (hps_0_hps_io_hps_io_gpio_inst_HLGPI13), //                .hps_io_gpio_inst_HLGPI13
        .hps_io_hps_io_gpio_inst_GPIO09  (hps_0_hps_io_hps_io_gpio_inst_GPIO09),  //                .hps_io_gpio_inst_GPIO09
        .memory_mem_a                    (memory_mem_a),                    //          memory.mem_a
        .memory_mem_ba                   (memory_mem_ba),                   //                .mem_ba
        .memory_mem_ck                   (memory_mem_ck),                   //                .mem_ck
        .memory_mem_ck_n                 (memory_mem_ck_n),                 //                .mem_ck_n
        .memory_mem_cke                  (memory_mem_cke),                  //                .mem_cke
        .memory_mem_cs_n                 (memory_mem_cs_n),                 //                .mem_cs_n
        .memory_mem_ras_n                (memory_mem_ras_n),                 //                .mem_ras_n
        .memory_mem_cas_n                (memory_mem_cas_n),                 //                .mem_cas_n
        .memory_mem_we_n                 (memory_mem_we_n),                  //                .mem_we_n
        .memory_mem_reset_n              (memory_mem_reset_n),              //                .mem_reset_n
        .memory_mem_dq                   (memory_mem_dq),                   //                .mem_dq
        .memory_mem_dqs                  (memory_mem_dqs),                  //                .mem_dqs
        .memory_mem_dqs_n                (memory_mem_dqs_n),                //                .mem_dqs_n
        .memory_mem_odt                  (memory_mem_odt),                  //                .mem_odt
        .memory_mem_dm                   (memory_mem_dm),                   //                .mem_dm
        .memory_oct_rzqin                (memory_oct_rzqin),                //                .oct_rzqin
        .reset_reset_n                   (hps_fpga_reset_n)                    //           reset.reset_n
    );

	 
    
endmodule

对工程文件进行分析综合

由于系统中的HPS是在Qsys集成工具中例化得到,因此除了所使用的外部存储器引脚以外,其他的专用引脚不需要再Quartus中进行分配,而是在HSP例化过程中由Qsys自动完成HPS的引脚分配,并把相关信息保存在XML格式的文件中提供给软件开发工具使用。但是HPS的外部存储器引脚需要在Quartus中进行引脚分配,该引脚分配信息同样保存在Tcl脚本文件中,只需要执行该脚本文件即可。

Tool->Tcl Scripts->hps_sdram_p0_pin_assignments.tcl->run

 执行完后可以在Tcl Console总查看执行结果

最后进行外设引脚分配、工程编译产生.sof文件、下载到FPGA开发板上,整个硬件平台建立完毕

1.6 硬件系统外设的输入/输出测试

系统控制台(Syetem Console)是一种硬件调试工具,通过Tcl脚本命令可以对Qsys中定制的FPGA部分的外设进行测试。在Syetem Console中通过执行Tcl命令可以读取输入PIO寄存器的状态,也可以向输出PIO寄存器写入需要输出的结果

1.7 相关代码

基于Qsys的HPS模型设计资源-CSDN文库

参考文献:

基于FPGA的嵌入式系统设计—Altera Soc FPGA
Cyclone V SoC FPGA和 Arria V SoC FPGA设计指南概述 (intel.cn)
Cyclone V SoC GSRD | Documentation | RocketBoards.org

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/793592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PostMan+Jmeter工具介绍及安装

目录 一、PostMan介绍​编辑 二、下载安装 三、Postman与Jmeter的区别 一、开发语言区别&#xff1a; 二、使用范围区别&#xff1a; 三、使用区别&#xff1a; 四、Jmeter安装 附一个详细的Jmeter按照新手使用教程&#xff0c;感谢作者&#xff0c;亲测有效。 五、Jme…

Linux:Linux的发展史和作用有哪些?

文章目录 Linux是什么&#xff1f;Linux的开源特征为什么要学习Linux&#xff1f;Linux的应用场景有哪些&#xff1f; Linux是什么&#xff1f; 简单来说&#xff0c;Linux就是操作系统&#xff0c;它和Windows等软件一样&#xff0c;都只是操作系统&#xff0c;并无区别 Linu…

linux查看系统版本、内存、CPU等信息

一、查看linux内核版本信息&#xff08;两种方法&#xff09; 1. cat /proc/version linux查看当前操作系统内核版本信息 2. uname -a linux查看当前操作系统内核版本信息 二、查看linux系统版本信息&#xff08;3种方法&#xff09; 1. lsb_release -a 可列出所有版本…

链表踏歌:独具慧眼,雕琢重复元素藏身匿迹

本篇博客会讲解力扣“83. 删除排序链表中的重复元素”的解题思路&#xff0c;这是题目链接。 由于链表是排好序的&#xff0c;我们可以通过遍历一次链表的方式&#xff0c;删除所有重复的结点。具体来说&#xff0c; 如果链表为空&#xff0c;则不需要删除&#xff0c;直接返回…

你能说说“淘宝购物车”怎么测试么?

前言 今天我给大家整理一篇面试高频问到的问题“淘宝购物车”怎么测试。 测试思维 依然附上测试任何事物的测试思路&#xff1a; 第一步&#xff1a;梳理产品的核心业务流程&#xff1a;明白这是个什么项目&#xff0c;实现了什么业务&#xff0c;以及是怎么实现的&#xf…

自动化测试框架unittest与pytest的区别!

引言 前面文章已经介绍了python单元测试框架&#xff0c;大家平时经常使用的是unittest&#xff0c;因为它比较基础&#xff0c;并且可以进行二次开发&#xff0c;如果你的开发水平很高&#xff0c;集成开发自动化测试平台也是可以的。而这篇文章主要讲unittest与pytest的区别&…

感染了后缀为.maloxx勒索病毒如何应对?数据能够恢复吗?

引言&#xff1a; 网络安全威胁不断进化&#xff0c;勒索病毒作为其中一种恶意软件类型&#xff0c;给个人用户和企业带来了严重的数据安全问题。.maloxx勒索病毒&#xff08;maloxx Ransomware&#xff09;是最近出现的一种恶意软件&#xff0c;它能够加密受害者计算机中的数…

建筑设计项目管理系统推荐:哪个最适合您的业务?

建筑设计用什么项目管理系统好&#xff1f;Zoho Projects设计行业一体化解决方案适用于以建筑设计、景观规划、勘探设计、室内设计、灯光设计、幕墙设计、工业设计、品牌设计、平面设计为主要业务的设计公司、广告公司、建筑设计院等设计机构。围绕设计行业的核心业务需求&…

媒体查询做页面的响应式布局@media

媒体查询(media)_花束javascipt的博客-CSDN博客

[JavaScript游戏开发] 绘制冰宫宝藏地图、人物鼠标点击移动、障碍检测

系列文章目录 第一章 2D二维地图绘制、人物移动、障碍检测 第二章 跟随人物二维动态地图绘制、自动寻径、小地图显示(人物红点显示) 第三章 绘制冰宫宝藏地图、人物鼠标点击移动、障碍检测 文章目录 系列文章目录前言一、本章节效果图二、介绍2.1、准备地图素材2.2、封装地图上…

GUI自动化测试进阶:页面对象模式

本文介绍的是页面对象设计模式及其常见的滥用继承的错误。 本文和语言无关&#xff0c;但作者主要使用python和java。本文假设读者已经具有了一定的python或java基础&#xff0c;知道类和方法是什么。 如果完全没有这方面的基础&#xff0c;请看我的《测试人员如何学Python》。…

TPS54620RHLR是一款同步降压转换器

TPS54620RHLR是一款同步降压转换器&#xff0c;通过高效率和集成高压侧和低压侧MOSFET&#xff0c;为小型设计进行了优化。通过电流模式控制实现了进一步的空间节省&#xff0c;从而减少了元件数量&#xff0c;并通过选择高开关频率&#xff0c;减少了电感器的占地面积。输出电…

Redis源码篇 - QuickList数据结构

Quicklist是Redis3.2之后引入的一个双向链表结构&#xff0c;其本质是对ziplist弊端的一个优化数据结构&#xff0c;ziplist是一种连续的内存空间&#xff0c;用于减少碎片化&#xff0c;减少内存占用&#xff0c;但是正是因为需要连续的内存空间&#xff0c;当数量越来越大时&…

023 - group by

GROUP BY语句将具有相同值的行分组到汇总行中 GROUP BY语句通常与聚合函数&#xff08;COUNT&#xff0c;MAX&#xff0c;MIN&#xff0c;SUM&#xff0c;AVG&#xff09;一起使用&#xff0c;将结果集分组为一列或多列。 SQL GROUP BY 语法 SELECT column_name(s) FROM tabl…

antd中的Cascader级联选择框怎么清空重置React

项目场景&#xff1a; React项目&#xff0c;使用antd中的Cascader级联选择框 问题描述&#xff1a; 通过其他按钮无法重置选择框中的项 原因分析&#xff1a;&#xff08;对应解决办法一和二&#xff09; 1、级联选择框的数据默认是根据options绑定的数组中的value值来进行…

Audio Clip

Unity支持的音频格式&#xff1a; aiff/wav&#xff1a;适用于较短声音片段 mp3/OGG:适用于较长的音乐片段 多声道强制转为单声道&#xff0c;减小所占内存。 勾选后会对声音有优化 在后台加载声音 Load Type&#xff1a; 第一个&#xff0c;以不压缩的形式存在内存&#…

idea插件开发-自定义语言02-Lexer

词法分析器或词法分析器定义文件内容如何分解为标记。词法分析器是自定义语言插件几乎所有功能的基础&#xff0c;比如基本语法突出显示到高级代码分析功能。由Lexer来定义。IDE在三个主要上下文中调用词法分析器&#xff0c;插件可以根据需要提供不同的词法分析器实现&#xf…

中南大学硕士论文latex版本全指导

要毕业了&#xff0c;闲下点时间写的东西。之前一直收益与师兄师姐流传下来的latex版本&#xff0c;用起来很舒服&#xff0c;希望后面的学弟学妹也能完美用上。latex功能很强大&#xff0c;不需要自己排版&#xff0c;只管内容即可&#xff0c;但是安装流程会多一丢丢。 目录 …

QT--day2(信号与槽,多界面跳转)

第一个界面头文件&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QIcon> //图标头文件 #include <QPushButton> //按钮类头文件QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public…

弱电系统与IBMS系统,强强联手打造智能建筑

随着科技的飞速发展和人们对建筑设施需求的不断提升&#xff0c;智能建筑正逐渐成为建筑行业的重要发展方向。智能建筑是指通过应用先进的技术和系统&#xff0c;对建筑物的结构、系统、服务和管理等进行优化组合&#xff0c;实现建筑设施的智能化和自动化。当前&#xff0c;智…