使用 Apache DolphinScheduler 进行 EMR 任务调度

news2024/11/24 13:09:46

file By AWS Team

前言

随着企业规模的扩大,业务数据的激增,我们会使用 Hadoop/Spark 框架来处理大量数据的 ETL/聚合分析作业,⽽这些作业将需要由统一的作业调度平台去定时调度。

在 Amazon EMR 中,可以使用 AWS 提供 Step Function,托管 AirFlow,以及 Apache Oozie 或 Azkaban 进行作业的调用。但随着 Apache Dolphinscheduler 产品完善、社区日益火爆、且其本身具有简单易用、高可靠、高扩展性、⽀持丰富的使用场景、提供多租户模式等特性,越来越多的企业选择使用该产品作为任务调度的服务。

DolphinScheduler 可以在 Amazon EMR 集群中进行安装和部署,但是结合 Amazon EMR 本身的特点和使用最佳实践,不建议客户使用一个大而全,并且持久运行的 EMR 集群提供整个大数据的相关服务,而是基于不同的维度对集群进行拆分,比如按研发阶段(开发、测试、生产)、工作负载(即席查询、批处理)、对时间敏感性、作业时长要求、组织类型等,因此 DolphinScheduler 作为统一的调度平台,不需要安装在某一个固定 EMR 集群上,而是选择独立部署,将作业划分到不同的 EMR 集群上,并以 DAG(Directed Acyclic Graph,DAG)流式方式组装,实现统一的调度和管理。 file

此篇文章将介绍 DolphinScheduler 安装部署,以及在 DolphinScheduler 中进行作业编排,以使用 python 脚本的方式执行 EMR 的任务调度,包括创建集群、集群状态检查、提交 EMR Step 作业、EMR Step 作业状态检查,所有作业完成后终止集群。

Amazon EMR

Amazon EMR 是一个托管的集群平台,可简化在 AWS 上运行大数据框架(如 Apache Hadoop 和 Apache Spark)的过程,以处理和分析海量数据。用户可一键启动包含了众多 Hadoop 生态数据处理,分析相关服务的集群,⽽无需手动进行复杂的配置。

Apache DolphinScheduler

Apache DolphinScheduler 是一个分布式易扩展的可视化 DAG 工作流任务调度开源系统。适用于企业级场景,提供了⼀个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。

特性

  • 简单易用

    • 可视化 DAG:⽤户友好的,通过拖拽定义工作流的,运行时控制工具模块化
    • 操作:模块化,有助于轻松定制和维护
  • 丰富的使用场景

    • 支持多种任务类型:支持 Shell、MR、Spark、SQL 等 10 余种任务类型,支持跨语言
    • 易于扩展丰富的工作流操作:⼯作流程可以定时、暂停、恢复和停止,便于维护和控制全局和本地参数
  • High Reliability

高可靠性:去中心化设计,确保稳定性。原生 HA 任务队列支持,提供过载容错能力。DolphinScheduler 能提供高度稳健的环境。

  • High Scalability

高扩展性:支持多租户和在线资源管理。支持每天 10 万个数据任务的稳定运行。

架构图: file

主要可实现:

  • 以 DAG 图的方式将 Task 按照任务的依赖关系关联起来,可实时可视化监控任务的运行状态
  • 支持丰富的任务类型:Shell、MR、Spark、SQL(mysql、oceanbase、postgresql、hive、sparksql)、Python、Sub_Process、Procedure 等
  • 支持工作流定时调度、依赖调度、手动调度、手动暂停/停止/恢复,同时支持失败重试/告警、从指定节点恢复失败、Kill 任务等操作
  • 支持工作流优先级、任务优先级及任务的故障转移及任务超时告警/失败
  • 支持工作流全局参数及节点自定义参数设置
  • 支持资源文件的在线上传/下载,管理等,支持在线文件创建、编辑
  • 支持任务日志在线查看及滚动、在线下载日志等
  • 实现集群 HA,通过 Zookeeper 实现 Master 集群和 Worker 集群去中心化
  • 支持对 Master/Worker CPU load,memory,CPU 在线查看
  • 支持工作流运行历史树形/甘特图展示、支持任务状态统计、流程状态统计
  • 支持补数
  • 支持多租户

安装 DolphinScheduler

DolphinScheduler 支持多种部署方式

  • 单机部署:Standalone 仅适用于 DolphinScheduler 的快速体验
  • 伪集群部署:伪集群部署目的是在单台机器部署 DolphinScheduler 服务,该模式下 master、worker、api server 都在同⼀台机器上
  • 集群部署:集群部署目的是在多台机器部署 DolphinScheduler 服务,用于运行⼤量任务情况

如果你是新手,想要体验 DolphinScheduler 的功能,推荐使用 Standalone 方式体验;如果你想体验更完整的功能,或者更大的任务量,推荐使用伪集群部署;如果你是在生产中使用,推荐使用集群部署或者 kubernetes。

本次实验将介绍在 AWS 上以伪集群模式部署 DolphinScheduler。

  1. 启动⼀台 EC2

在 AWS 公有子网中启动一台 EC2,选用 Amazon-linux2,m5.xlarge 安全组开启 TCP 12345 端口。

  1. 安装 JDK,配置 JAVA_HOME 环境
java -version  
openjdk version "1.8.0_362"  
OpenJDK Runtime Environment (build 1.8.0_362-b08) OpenJDK 64-Bit Server VM (build 25.362-b08, mixed mode)
  1. 安装启动 Zookeeper
bin/zkServer.sh status  
/usr/bin/java  
ZooKeeper JMX enabled by default  
Using config: /usr/local/src/apache-zookeeper-3.8.1-bin/bin/../conf/zoo.cfg Client port found: 2181. Client address: localhost. Client SSL: false.  
Mode: standalone
  1. 启动 mysql,这里选用 Aurora Serverless

file

  1. 安装 AWS CLI2
aws --version  
aws-cli/2.11.4 Python/3.11.2 Linux/5.10.167-147.601.amzn2.x86_64 exe/x86_64.amzn.2 prompt/off
  1. 更新 python 版本到 3.9
python --version  
Python 3.9.1
  1. 下载 DolphinScheduler
cd /usr/local/src  
wget https://dlcdn.apache.org/dolphinscheduler/3.1.4/apache-dolphinscheduler-3.1.4-bin.tar.gz
  1. 配置用户免密及权限
# 创建用户需使用 root 登录  
useradd dolphinscheduler  

# 添加密码  
echo "dolphinscheduler" | passwd --stdin dolphinscheduler  

# 配置 sudo 免密  
sed -i '$adolphinscheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL' /etc/sudoers
sed -i 's/Defaults   requirett/#Defaults requirett/g' /etc/sudoers  

# 修改目录权限,使得部署用户对二进制包解压后的 apache-dolphinscheduler-*-bin 目录有操作权限  
cd /usr/local/src  
chown -R dolphinscheduler:dolphinscheduler apache-dolphinscheduler-*-bin 
  1. 配置机器 SSH 免密登录
# 切换 dolphinscheduler 用户
su dolphinscheduler  
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa  
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys   
chmod 600 ~/.ssh/authorized_keys  
# 注意:配置完成后,可以通过运行命令 ssh localhost 判断是否成功,如果不需要输⼊密码就能 ssh 登陆则证明成功
  1. 数据初始化
cd /usr/local/src  
# 下载 mysql-connector  
wget https://downloads.mysql.com/archives/get/p/3/file/mysql-connector-j-8.0.31.tar.gz   
tar -zxvf mysql-connector-j-8.0.31.tar.gz  
# 驱动拷贝  
cp mysql-connector-j-8.0.31/mysql-connector-j-8.0.31.jar ./apache-dolphinscheduler-3.1.4-bin/api-server/libs/  
cp mysql-connector-j-8.0.31/mysql-connector-j-8.0.31.jar ./apache-dolphinscheduler-3.1.4-bin/alert-server/libs/  
cp mysql-connector-j-8.0.31/mysql-connector-j-8.0.31.jar ./apache-dolphinscheduler-3.1.4-bin/master-server/libs/  
cp mysql-connector-j-8.0.31/mysql-connector-j-8.0.31.jar ./apache-dolphinscheduler-3.1.4-bin/worker-server/libs/  
cp mysql-connector-j-8.0.31/mysql-connector-j-8.0.31.jar ./apache-dolphinscheduler-3.1.4-bin/tools/libs/  

# 安装 mysql 客户端  
# 修改 {mysql-endpoint} 为你 mysql 连接地址  
# 修改 {user} 和 {password} 为你 mysql ⽤户名和密码  
mysql -h {mysql-endpoint} -u{user} -p{password}  
mysql> CREATE DATABASE dolphinscheduler DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci; 

# 修改 {user} 和 {password} 为你希望的用户名和密码  
mysql> CREATE USER '{user}'@'%' IDENTIFIED BY '{password}';   
mysql> GRANT ALL PRIVILEGES ON dolphinscheduler.* TO '{user}'@'%';  
mysql> CREATE USER '{user}'@'localhost' IDENTIFIED BY '{password}';   
mysql> GRANT ALL PRIVILEGES ON dolphinscheduler.* TO '{user}'@'localhost';   
mysql> FLUSH PRIVILEGES;  

修改数据库配置  
vi bin/env/dolphinscheduler_env.sh  

# Database related configuration, set database type, username and password # 修改 {mysql-endpoint} 为你 mysql 连接地址  
# 修改 {user} 和 {password} 为你 mysql ⽤户名和密码,{rds-endpoint}为数据库连接地址
export DATABASE=${DATABASE:-mysql}   
export SPRING_PROFILES_ACTIVE=${DATABASE}  
export SPRING_DATASOURCE_URL="jdbc:mysql://{rds-endpoint}/dolphinscheduler?useUnicode=true&characterEncoding=UTF-8&useSSL=false"   
export SPRING_DATASOURCE_USERNAME={user}  
export SPRING_DATASOURCE_PASSWORD={password}  

# 执行数据初始化  
bash apache-dolphinscheduler/tools/bin/upgrade-schema.sh
  1. 修改 install_env.sh
cd /usr/local/src/apache-dolphinscheduler
vi bin/env/install_env.sh   

# 替换 IP 为 DolphinScheduler 所部署 EC2 私有 IP 地址  
ips=${ips:-"10.100.1.220"}  
masters=${masters:-"10.100.1.220"}
workers=${workers:-"10.100.1.220:default"}
alertServer=${alertServer:-"10.100.1.220"}
apiServers=${apiServers:-"10.100.1.220"}
installPath=${installPath:-"~/dolphinscheduler"}  
  1. 修改 DolphinScheduler_env.sh
cd /usr/local/src/  
mv apache-dolphinscheduler-3.1.4-bin apache-dolphinscheduler   
cd ./apache-dolphinscheduler  
# 修改 DolphinScheduler 环境变量  
vi bin/env/dolphinscheduler_env.sh  

export JAVA_HOME=${JAVA_HOME:-/usr/lib/jvm/jre-1.8.0-openjdk-1.8.0.362.b08-1.amzn2.0.1.x86_64}
export PYTHON_HOME=${PYTHON_HOME:-/bin/python} 
  1. 启动 DolphinScheduler
cd /usr/local/src/apache-dolphinscheduler 
su dolphinscheduler  
bash ./bin/install.sh
  1. 访问 DolphinScheduler

URL 访问使用 IP 为 DolphinScheduler 所部署 EC2 公有 IP 地址 http://ec2-endpoint:12345/dolphinscheduler/ui/login

初始用户名/密码 admin/dolphinscheduler123 05

配置 DolphinScheduler

  1. 建立租户

file 2. 将用户与绑定租户

file

  1. AWS 创建 IAM 策略
{  
    "Version":"2012-10-17",  
    "Statement":[  
        {  
            "Sid":"ElasticMapReduceActions",  
            "Effect":"Allow",  
            "Action":[  
                "elasticmapreduce:RunJobFlow",  
                "elasticmapreduce:DescribeCluster",  
                "elasticmapreduce:AddJobFlowSteps",  
                "elasticmapreduce:DescribeStep",  
                "elasticmapreduce:TerminateJobFlows",  
                "elasticmapreduce:SetTerminationProtection"  
            ],  
            "Resource":"*"  
        },  
        {  
            "Effect":"Allow",  
            "Action":[  
                "iam:GetRole",  
                "iam:PassRole"  
            ],  
            "Resource":[  
                "arn:aws:iam::accountid:role/EMR_DefaultRole",  
                "arn:aws:iam::accountid:role:role/EMR_EC2_DefaultRole"  
            ]  
        }  
    ]  
}  
  1. 创建 IAM ⾓⾊

进入 AWS IAM,创建角色,并赋予上⼀步所创建的策略

  1. DolphinScheduler 部署 EC2 绑定角色

file

将 EC2 绑定上⼀步创建的角色,使 DolphinScheduler 所部署 EC2 具有调用 EMR 权限。

  1. python 安装 boto3,以及要用到其他的组件
sudu pip install boto3  
sudu pip install redis

使用DolphinScheduler进行作业编排

以Python方式执行。

作业执行时序图:

file

  1. 创建 EMR 集群创建任务

创建⼀个 EMR 集群,3 个 MASTER,3 个 CORE,指定子网与权限,以及集群空闲十分钟后自动终止。具体参数可见链接。

import boto3  
from datetime import date  
import redis  

def run_job_flow():  
    response = client.run_job_flow(  
        Name='create-emrcluster-'+ d1,  
        LogUri='s3://s3bucket/elasticmapreduce/',  
        ReleaseLabel='emr-6.8.0',  
        Instances={  
            'KeepJobFlowAliveWhenNoSteps': False,  
            'TerminationProtected': False,  
            # 替换{Sunbet-id}为你需要部署的子网 id  
            'Ec2SubnetId': '{Sunbet-id}',  
            # 替换{Keypairs-name}为你 ec2 使用密钥对名称  
            'Ec2KeyName': '{Keypairs-name}',  
            'InstanceGroups': [  
                {  
                    'Name': 'Master',  
                    'Market': 'ON_DEMAND',  
                    'InstanceRole': 'MASTER',  
                    'InstanceType': 'm5.xlarge',  
                    'InstanceCount': 3,  
                    'EbsConfiguration': {  
                        'EbsBlockDeviceConfigs': [  
                            {  
                                'VolumeSpecification': {  
                                    'VolumeType': 'gp3',  
                                    'SizeInGB': 500  
                                },  
                                'VolumesPerInstance': 1  
                            },  
                        ],  
                        'EbsOptimized': True  
                    },  
                },  
                {  
                    'Name': 'Core',  
                    'Market': 'ON_DEMAND',  
                    'InstanceRole': 'CORE',  
                    'InstanceType': 'm5.xlarge',  
                    'InstanceCount': 3,  
                    'EbsConfiguration': {  
                        'EbsBlockDeviceConfigs': [  
                            {  
                                'VolumeSpecification': {  
                                    'VolumeType': 'gp3',  
                                    'SizeInGB': 500  
                                },  
                                'VolumesPerInstance': 1  
                            },  
                        ],  
                        'EbsOptimized': True  
                    },  
                }  
            ],  
        },  
        Applications=[{'Name': 'Spark'},{'Name': 'Hive'},{'Name': 'Pig'},{'Name': 'Presto'}],  
        Configurations=[  
            { 'Classification': 'spark-hive-site',  
                'Properties': {  
                    'hive.metastore.client.factory.class': 'com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory'}  
            },  
            { 'Classification': 'hive-site',  
                'Properties': {  
                    'hive.metastore.client.factory.class': 'com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory'}  
            },  
            { 'Classification': 'presto-connector-hive',  
                'Properties': {  
                    'hive.metastore.glue.datacatalog.enabled': 'true'}  
            }  
        ],  
        JobFlowRole='EMR_EC2_DefaultRole',  
        ServiceRole='EMR_DefaultRole',  
        EbsRootVolumeSize=100,  
        # 集群空闲十分钟自动终止  
        AutoTerminationPolicy={  
            'IdleTimeout': 600  
        }  
      )  
    return response  

if __name__ == "__main__":  
    today = date.today()  
    d1 = today.strftime("%Y%m%d")  
    # {region}替换为你需要创建 EMR 的 Region  
    client = boto3.client('emr',region_name='{region}')  
    # 创建 EMR 集群  
    clusterCreate = run_job_flow()  
    job_id = clusterCreate['JobFlowId']  

    # 使用 redis 来保存信息,作为 DolphinScheduler job step 的参数传递,也可以使用 DolphinScheduler 所使用的 mysql 或者其他方式存储  
    # 替换{redis-endpoint}为你 redis 连接地址  
    pool = redis.ConnectionPool(host='{redis-endpoint}', port=6379, decode_responses=True)  
    r = redis.Redis(connection_pool=pool)  
    r.set('cluster_id_'+d1, job_id) 
  1. 创建 EMR 集群状态检查任务

检查 EMR 集群是否创建完毕

import boto3  
import redis  
import time  
from datetime import date  

if __name__ == "__main__":  
    today = date.today()  
    d1 = today.strftime("%Y%m%d")  

    # {region}替换为你需要创建 EMR 的 Region  
    client = boto3.client('emr',region_name='{region}')  
    # 替换{redis-endpoint}为你 redis 连接地址  
    pool = redis.ConnectionPool(host='{redis-endpoint}', port=6379, decode_responses=True)  
    r = redis.Redis(connection_pool=pool)  
    # 获取创建的 EMR 集群 id  
    job_id = r.get('cluster_id_' + d1)  
    print(job_id)  
    while True:  
        result = client.describe_cluster(ClusterId=job_id)  
        emr_state = result['Cluster']['Status']['State']  
        print(emr_state)  
        if emr_state == 'WAITING':  
            # EMR 集群创建成功  
            break  
        elif emr_state == 'FAILED':  
            # 集群创建失败  
            # do something...  
            break  
        else:  
            time.sleep(10)
  1. 使用创建好的 EMR 集群启动 spark job
import time  
import re  
import boto3  
from datetime import date  
import redis  

def generate_step(step_name, step_command):  
    cmds = re.split('\\s+', step_command)  
    print(cmds)  
    if not cmds:  
        raise ValueError  
    return {  
        'Name': step_name,  
        'ActionOnFailure': 'CANCEL_AND_WAIT',  
        'HadoopJarStep': {  
            'Jar': 'command-runner.jar',  
            'Args': cmds  
        }  
    }  


if __name__ == "__main__":  
    today = date.today()  
    d1 = today.strftime("%Y%m%d")  

    # {region}替换为你需要创建 EMR 的 Region  
    client = boto3.client('emr',region_name='{region}')  

    # 获取 emr 集群 id  
    # 替换{redis-endpoint}为你 redis 连接地址  
    pool = redis.ConnectionPool(host='{redis-endpoint}', port=6379, decode_responses=True)  
    r = redis.Redis(connection_pool=pool)  
    job_id = r.get('cluster_id_' + d1)  

    # job 启动命令  
    spark_submit_cmd = """spark-submit 
                s3://s3bucket/file/spark/spark-etl.py 
                s3://s3bucket/input/ 
                s3://s3bucket/output/spark/"""+d1+'/'  

    steps = []  
    steps.append(generate_step("SparkExample_"+d1 , spark_submit_cmd),)  
    # 提交 EMR Step 作业  
    response = client.add_job_flow_steps(JobFlowId=job_id, Steps=steps)  
    step_id = response['StepIds'][0]  
    # 将作业 id 保存,以便于做任务检查  
    r.set('SparkExample_'+d1, step_id)
  1. 创建 JOB 执⾏情况检查
import boto3  
import redis  
import time  
from datetime import date  


if __name__ == "__main__":  
    today = date.today()  
    d1 = today.strftime("%Y%m%d")  

    # {region}替换为你需要创建 EMR 的 Region  
    client = boto3.client('emr',region_name='{region}')  

    # 替换{redis-endpoint}为你 redis 连接地址  
    pool = redis.ConnectionPool(host='{redis-endpoint}', port=6379, decode_responses=True)  
    r = redis.Redis(connection_pool=pool)  
    job_id = r.get('cluster_id_' + d1)  
    step_id = r.get('SparkExample_' + d1)  
    print(job_id)  
    print(step_id)  

    while True:  
        # 查询作业执行结果  
        result = client describe_step(ClusterId=job_id,StepId=step_id)  
        emr_state = result['Step']['Status']['State']  
        print(emr_state)  
        if emr_state == 'COMPLETED':  
            # 作业执行完成  
            break  
        elif emr_state == 'FAILED'  
            # 作业执行失败  
            # do somethine  
            # ......  
            break  
        else:  
            time.sleep(10)
  1. 设置执⾏顺序

file 在 DolphinScheduler – 项目管理 – 工作流 – 工作流定义中创建工作流,并创建 python 任务,将以上 python 脚本作为任务串联起来

  1. 保存并上线

file 保存任务并点击上线

  1. 执行

file 可以点击立即执行,或指定计划任务按时执行。

在 EMR 中查看执行情况

EMR 创建情况——正在启动

file EMR Step执行情况——正在执行

file

  1. 检查执行结果以及执行⽇志

file 在 DolphinScheduler – 项目管理 – 工作流 – 工作流实例中检查执行状态,以及执行日志 file 在 EMR 中查看执⾏情况

EMR 创建情况——正在等待

file Step 执行情况——完成 file

  1. 终止集群

对于临时性执行作业或者每天定时执行的批处理作业,可以在作业结束后终⽌ EMR 集群以节省成本(EMR 使用最佳实践)。终止 EMR 集群可以使用 EMR 本身功能在空闲后自动终止,或者手动调用中止。

自动终止 EMR 集群,在创建集群中进行配置

AutoTerminationPolicy={  
    'IdleTimeout': 600  
} 

此集群将在作业执行完空闲十分钟后自动终止 手动终止 EMR 集群:

import boto3  
from datetime import date  
import redis  

if __name__ == "__main__":  
    today = date.today()  
    d1 = today.strftime("%Y%m%d")  

    # 获取集群 id  
    # {region}替换为你需要创建 EMR 的 Region  
    client = boto3.client('emr',region_name='{region}')  

    # 替换{redis-endpoint}为你 redis 连接地址  
    pool = redis.ConnectionPool(host='{redis-endpoint}', port=6379, decode_responses=True)  
    r = redis.Redis(connection_pool=pool)  
    job_id = r.get('cluster_id_' + d1)  
    # 关闭集群终止保护  
    client.set_termination_protection(JobFlowIds=[job_id],TerminationProtected=False)  
    # 终止集群  
    client.terminate_job_flows(JobFlowIds=[job_id])  

将此脚本加⼊到 DolphinScheduler 作业流中,作业流在全部任务执行完成后执行该脚本以实现终止 EMR 集群。

总结

随着企业大数据分析平台的应⽤,越来越多数据处理流程/处理任务需要利用一个简单易用的调度系统去理清其错综复杂的依赖关系,并且按执行计划进行编排调度,同时需要提供易使用易扩展的可视化 DAG 能力,而 Apache DolphinScheduler 正好满足了以上需求。

本文介绍了在 AWS 上独立部署 DolphinScheduler,并利用 EMR 的特性,结合最佳实践,展示了从创建 EMR 集群到提交 ETL 作业,最后作业执行全部完成后将集群进行终止,形成⼀个完整的作业处理的流程。用户可以参考该文档快速的部署搭建自己的大数据调度体系。

作者

王骁,AWS 解决方案架构师,负责基于 AWS 云计算方案架构的咨询和设计,在国内推广 AWS 云平台技术和各种解决方案,具有丰富的企业 IT 架构经验,目前侧重于于大数据领域的研究。

本文由 白鲸开源科技 提供发布支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/792180.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flutter系列文章-Flutter进阶

在前两篇文章中,我们已经了解了Flutter的基础知识,包括Flutter的设计理念、框架结构、Widget系统、基础Widgets以及布局。在本文中,我们将进一步探讨Flutter的高级主题,包括处理用户交互、创建动画、访问网络数据等等。为了更好地…

黄东旭:The Future of Database,掀开 TiDB Serverless 的引擎盖

在 PingCAP 用户峰会 2023 上, PingCAP 联合创始人兼 CTO 黄东旭 分享了“The Future of Database”为主题的演讲, 介绍了 TiDB Serverless 作为未来一代数据库的核心设计理念。黄东旭 通过分享个人经历和示例,强调了数据库的服务化而非服务化…

【C 程序设计】第 1 章:C 语言简介与思维导图

目录 一、C 语言思维导图 (1)数据类型 (2)运算 (3)控制结构 (4)过程式,模块化程序设计 (5)输入输出 (6)编码规…

AntDB数据库与东方通TongWeb完成兼容互认,共筑数字化底座核心能力

近日,湖南亚信安慧科技有限公司(简称:亚信安慧)与北京东方通科技股份有限公司(简称:东方通)完成AntDB数据库与东方通应用服务器TongWeb V7.0的兼容互认。经测试,AntDB数据库能与东方…

C++入门之stl六大组件--Vector库函数的介绍,以及模拟实现一些常用接口

文章目录 前言 一、vector的介绍和使用 1.vector的介绍 2.vector的使用 2.1vector的定义 ​编辑 2.2vector iterator的使用 2.3vector空间增长问题 2.4vector增删查改 2.5vector迭代器失效问题 会引起迭代器失效的操作有: 二、模拟实现一些vector常用接口…

四、运算符(2)

本章概要 关系运算符 测试对象等价 逻辑运算符 短路 字面值常量 下划线指数计数法 位运算符 关系运算符 关系运算符会通过产生一个布尔(boolean)结果来表示操作数之间的关系。如果关系为真,则结果为 true,如果关系为假&#xf…

Android版本的发展4-13

Android 4.4 KitKat 1、通过主机卡模拟实现新的 NFC 功能。 2、低功耗传感器,传感器批处理,步测器和计步器。 3、全屏沉浸模式,隐藏所有系统 UI,例如状态栏和导航栏。它适用于鲜艳的视觉内容,例如照片、视频、地图、…

CTF-REVERSE练习之逆向初探

逆向是指通过反汇编和调试等一些手段及工具,分析计算机程序的二进制可执行代码,从而获得程序的算法细节和实现原理的技术。不仅如此,逆向技能在信息安全面向的具体工作,如恶意代码分析、软件漏洞挖掘、移动安全以及对软件的破解方…

SAP ABAP 用户状态锁定案例

一、前言 项目需求是根据当天及前两天的离职员工信息(假设这是一个定时器任务每天下午5点执行程序,计算前两天的员工工号是为了将5点之后办理离职的员工工号找出来),将这些员工在用户表 USR02 中的锁定状态设置为 “64”&#xff…

“奢侈品”价格的“快消品”,竹叶青这么想赚年轻人的“茶水钱”?

文 | 螳螂观察 作者 | 青月 或许是受养生焦虑的影响,这届年轻人似乎爱上了喝茶。 《抖音电商茶行业洞察报告》数据显示, 年轻客群已经成为了抖音电商茶行业的增长极,在茶叶、茶具、茶文化书籍等方面,18-30岁消费者是当之无愧消…

022 - DISTINCT

SQL SELECT DISTINCT 语句 在表中,可能会包含重复值。这并不成问题,不过,有时您也许希望仅仅列出不同(distinct)的值。 关键词 DISTINCT 用于返回唯一不同的值。 -- 语法: SELECT DISTINCT 列名称 FROM 表…

如何给侧边栏添加 Badge 计数标记

一、需求功能 给侧边菜单栏或及子菜单栏添加计数标记 el-badge 效果如下&#xff1a; 二、实现思路 结合 icon 图标渲染的思路&#xff0c;通过在layout 的 item.vue 中使用 vnodes.push 方法实现对 <el-badge /> 的渲染。在通过 Vuex 的状态管理将菜单栏需要的数据转…

测试自动化面试题

Python python有哪些数据类型? Python支持多种数据类型&#xff0c;包括以下常见的数据类型&#xff1a; 数字类型&#xff1a;整数&#xff08;int&#xff09;、浮点数&#xff08;float&#xff09;和复数&#xff08;complex&#xff09;。 字符串类型&#xff1a;由字…

Mysql-MVCC 并发版本控制

参考链接&#xff1a;一文读懂MVCC实现原理_Nicolos_Z的博客-CSDN博客 1.总述&#xff1a; MVCC 主要是InnoDB解决数据库事务读写&#xff0c;导致的脏读、重复读问题的处理方法。通过快照读的方式&#xff0c;提高数据库并发查询的能力。 2.MVCC的实现 实现MVCC主要用到了…

【隐式动态求解】使用非线性纽马克方法的隐式动态求解研究(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码实现 &#x1f4a5;1 概述 非线性纽马克方法&#xff08;Nonlinear Newton-Raphson method&#xff09;是一种用于求解非线性方程组的数值方法&#xff0c;其中包含了隐式…

智慧景区综合解决方案52页,多媒体触控系统,顶层设计

导读&#xff1a;原文《智慧景区综合解决方案52页ppt》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 完整版领取方式 完整版领取方式&#xff1a; 如需获取完整的电…

C++语法(26)--- 特殊类设计

C语法&#xff08;25&#xff09;--- 异常与智能指针_哈里沃克的博客-CSDN博客https://blog.csdn.net/m0_63488627/article/details/131537799?spm1001.2014.3001.5501 目录 1.特殊类设计 1.设计一个类&#xff0c;不能被拷贝 C98 C11 2.设计一个类&#xff0c;只能在堆上…

Volatile关键字详解

Volatile关键字详解 volatile的定义 这个引用JSR中的定义&#xff1a; The Java programming language allows threads to access shared variables (17.1). As a rule, to ensure that shared variables are consistently and reliably updated, a thread should ensure tha…

工业边缘计算为什么?

在工厂环境中使用边缘计算并不新鲜。可编程逻辑控制器&#xff08;PLC&#xff09;、微控制器、服务器和PC进行本地数据处理&#xff0c;甚至是微型数据中心都是边缘技术&#xff0c;已经在工厂系统中存在了几十年。在车间里看到的看板系统&#xff0c;打卡系统&#xff0c;历史…

【java实习评审】对热门小说更新时的聚集访问流量进行性能优化优化,有较好的设计

大家好&#xff0c;本篇文章分享一下【校招VIP】免费商业项目“推推”第一期书籍详情模块java同学的文档周最佳作品。该同学来自西安建筑科技大学软件工程专业。 本项目亮点难点&#xff1a;1 热门书籍在更新点的访问压力&#xff0c;2 书籍更新通知的及时性和有效性&#xff…