欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。
均值坐标定义
均值坐标定义
v 0 是 多 边 形 v 1 v 2 v 3 . . . v n 内 的 一 点 v_0是多边形v_1v_2v_3...v_n内的一点 v0是多边形v1v2v3...vn内的一点
就 会 存 在 均 值 坐 标 ϕ i ( v 0 ) = ω i ∑ j = 1 n ω j 就会存在均值坐标\phi_i(v_0)=\frac {\omega_i}{\sum_{j=1}^n\omega_j} 就会存在均值坐标ϕi(v0)=∑j=1nωjωi
其 中 ω i = t a n ( α i − 1 2 ) + t a n ( α i 2 ) ∣ ∣ v i − v 0 ∣ ∣ 其中\omega_i=\frac {tan \left(\frac {\alpha_{i-1}}{2} \right)+tan \left(\frac {\alpha_{i}}{2} \right)}{||v_i-v_0||} 其中ωi=∣∣vi−v0∣∣tan(2αi−1)+tan(2αi)
使得
v 0 = ∑ i = 1 n ϕ i ( v 0 ) ⋅ v i … … ( 1 ) v_0=\displaystyle \sum_{i=1}^n\phi_i(v_0)\cdot v_i ……(1) v0=i=1∑nϕi(v0)⋅vi……(1)
均值坐标参数化(MVC Parameterization)
该算法与tutte’s embedding 算法的基本过程一样,只是把线性组合的系数换成均值坐标表示。
该算法可以处理与圆盘同胚非闭合的三角网格面,他能保证3D与2D是一一映射的。
算法过程
- 先把边界点按照顺序均匀地放置在圆边界上。
- 对于内部的点,vi 是周围顶点的均值坐标线性组合。
v i = ∑ j ∈ Ω ( i ) ϕ j ( v i ) ⋅ v j ( 1 ) , ϕ j ( v i ) 是 顶 均 值 坐 标 表 示 。 v_i = \displaystyle \sum_{j \in \Omega(i)} {\phi_j(v_i)\cdot v_j} (1), \phi_j(v_i)是顶均值坐标表示。 vi=j∈Ω(i)∑ϕj(vi)⋅vj(1),ϕj(vi)是顶均值坐标表示。
n个未知顶点,n个方程刚好解出来。
行列式构建
对
(
1
)
式
两
边
都
乘
以
∑
j
∈
Ω
(
i
)
ω
i
j
,
再
移
项
,
得
到
对(1)式两边都乘以 \displaystyle \sum_{j\in \Omega(i)}\omega_{ij},再移项, 得到
对(1)式两边都乘以j∈Ω(i)∑ωij,再移项,得到
( ∑ j ∈ Ω ( i ) ω i j ) v i − ∑ j ∈ Ω ( i ) ω i j ⋅ v j = 0 \left(\displaystyle \sum_{j\in \Omega(i)}\omega_{ij}\right)v_i - \displaystyle \sum_{j \in \Omega(i)} {\omega_{ij}\cdot v_j}= 0 ⎝⎛j∈Ω(i)∑ωij⎠⎞vi−j∈Ω(i)∑ωij⋅vj=0
利用上式,在具体实现的时候可以先计算出所有wij(没有连接关系则为0),
然后对于边界点,行列式的值r[i][i]=1, b[i]=(ui, vi)
对
于
非
边
界
点
r
[
i
]
[
i
]
=
(
∑
j
∈
Ω
(
i
)
ω
i
j
)
对于非边界点r[i][i]=\left(\displaystyle \sum_{j\in \Omega(i)}\omega_{ij}\right)
对于非边界点r[i][i]=⎝⎛j∈Ω(i)∑ωij⎠⎞
r [ i ] [ j ] = − ω i j , b [ i ] = ( 0 , 0 ) r[i][j]=-\omega_{ij},b[i]=(0,0) r[i][j]=−ωij,b[i]=(0,0)
算法实现
代码链接点击前往
代码链接点击前往
代码链接点击前往
#include"include/PolyMesh/IOManager.h"
#include"include/PolyMesh/PolyMesh.h"
#include <Eigen/Sparse>
#define pi 3.1415926
using namespace acamcad;
using namespace polymesh;
using namespace std;
using namespace Eigen;
PolyMesh mesh;
void MVCCoordinates(PolyMesh* mesh)
{
int v_n = mesh->numVertices();
int iter;
int boundary_num=0;
VectorXd u(v_n), v(v_n);// u, v代表方程行列式的B列
for (VertexIter v_it = mesh->vertices_begin(); v_it != mesh->vertices_end(); ++v_it)
{
if (mesh->isBoundary(*v_it))boundary_num++;
}
MHalfedge* first_heh= *mesh->halfedge_begin();
// 查找边界
for (HalfEdgeIter he_it = mesh->halfedge_begin(); he_it != mesh->halfedge_end(); ++he_it)
{
if (mesh->isBoundary(*he_it))
{
first_heh = *he_it;
break;
}
}
MHalfedge* iter_heh = first_heh->next();
iter = 0;
// 初始化边界点的uv值
while (iter_heh != first_heh)
{
MVert* from_v = iter_heh->fromVertex();
u[from_v->index()] = cos(double(2 * pi * iter / boundary_num));
v[from_v->index()] = sin(double(2 * pi * iter / boundary_num));
iter_heh = iter_heh->next();
iter++;
}
u[first_heh->fromVertex()->index()] = cos(double(2 * pi * iter / boundary_num));
v[first_heh->fromVertex()->index()] = sin(double(2 * pi * iter / boundary_num));
SparseMatrix<double> weight(v_n, v_n);
std::vector<Triplet<double>> triplet;
// 针对每个面计算出边的wij. 后面可以聚合到矩阵中。
for (FaceIter f_it = mesh->polyfaces_begin(); f_it != mesh->polyfaces_end(); ++f_it)
{
MHalfedge* heh = (*f_it)->halfEdge();
MVert* v0 = heh->fromVertex();
MVert* v1 = heh->toVertex();
MHalfedge* next_heh = heh->next();
MVert* v2 = next_heh->toVertex();
double l2 = (v0->position() - v1->position()).norm();
double l1 = (v0->position() - v2->position()).norm();
double l0 = (v1->position() - v2->position()).norm();
double angle = acos(dot(v2->position() - v0->position(), v1->position() - v0->position()) / (l1 * l2));
triplet.push_back(Triplet<double>(v0->index(), v1->index(), tan(angle * 0.5) / l2));
triplet.push_back(Triplet<double>(v0->index(), v2->index(), tan(angle * 0.5) / l1));
angle = acos(dot(v0->position() - v1->position(), v2->position() - v1->position()) / (l2 * l0));
triplet.push_back(Triplet<double>(v1->index(), v0->index(), tan(angle * 0.5) / l2));
triplet.push_back(Triplet<double>(v1->index(), v2->index(), tan(angle * 0.5) / l0));
angle = acos(dot(v0->position() - v2->position(), v1->position() - v2->position()) / (l0 * l1));
triplet.push_back(Triplet<double>(v2->index(), v0->index(), tan(angle * 0.5) / l1));
triplet.push_back(Triplet<double>(v2->index(), v1->index(), tan(angle * 0.5) / l0));
}
// 矩阵聚合
weight.setFromTriplets(triplet.begin(), triplet.end());
SparseMatrix<double> matrix(v_n, v_n);
triplet.clear();
for (VertexIter v_it = mesh->vertices_begin(); v_it != mesh->vertices_end(); ++v_it)
{
// 边界处只要设置 matirx[i][i]=1
if (mesh->isBoundary(*v_it)) {
triplet.push_back(Triplet<double>((*v_it)->index(), (*v_it)->index(), 1));
continue;
}
// 内部点,设置 B列为0
u[(*v_it)->index()] = 0;
v[(*v_it)->index()] = 0;
// maxtrix[i][i] = sum(wij), maxtrix[i][j] = -wij
for (VertexVertexIter vv_it = mesh->vv_iter(*v_it); vv_it.isValid(); ++vv_it)
{
triplet.push_back(Triplet<double>((*v_it)->index(), (*vv_it)->index(), -weight.coeff((*v_it)->index(), (*vv_it)->index())));
triplet.push_back(Triplet<double>((*v_it)->index(), (*v_it)->index(), weight.coeff((*v_it)->index(), (*vv_it)->index())));
}
}
matrix.setFromTriplets(triplet.begin(), triplet.end());
SparseLU<SparseMatrix<double>> solver;
solver.analyzePattern(matrix);
solver.factorize(matrix);
VectorXd result_u = solver.solve(u);
VectorXd result_v = solver.solve(v);
for (VertexIter v_it = mesh->vertices_begin(); v_it != mesh->vertices_end(); ++v_it)
{
(*v_it)->setPosition(result_u[(*v_it)->index()], result_v[(*v_it)->index()], 0);
}
}
算法效果
原模型
参数化结果
原模型
参数化结果
本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。