【LeetCode热题100】打卡第44天:倒数第30~25题

news2025/1/22 15:43:17

文章目录

  • 【LeetCode热题100】打卡第44天:倒数第30~25题
    • ⛅前言
  • 移动零
    • 🔒题目
    • 🔑题解
  • 寻找重复数
    • 🔒题目
    • 🔑题解
  • 二叉树的序列化与反序列化
    • 🔒题目
    • 🔑题解
  • 最长递增子序列
    • 🔒题目
    • 🔑题解
  • 删除无效括号
    • 🔒题目
    • 🔑题解

【LeetCode热题100】打卡第44天:倒数第30~25题

⛅前言

大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏!

精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种类型的算法题目,包括但不限于数组、链表、树、字典树、图、排序、搜索、动态规划等等,并会提供详细的解题思路以及Java代码实现。如果你也想刷题,不断提升自己,就请加入我们吧!QQ群号:827302436。我们共同监督打卡,一起学习,一起进步。

博客主页💖:知识汲取者的博客

LeetCode热题100专栏🚀:LeetCode热题100

Gitee地址📁:知识汲取者 (aghp) - Gitee.com

题目来源📢:LeetCode 热题 100 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台

PS:作者水平有限,如有错误或描述不当的地方,恳请及时告诉作者,作者将不胜感激

移动零

🔒题目

原题链接:283.移动零

image-20230724115111666

🔑题解

  • 解法一:暴力枚举即可

    但是我们使用copyOfRange方法存在一个弊端,它会重现创建一个数组,然后将值赋值给新的数组引用,给不是在原有的数组引用上进行赋值,所以这里就导致最终无法修改到我们要实现效果的数组

    image-20230724135719319

    image-20230724140037859

    下方代码,最终输出的nums全部是 0

    /**
     * @author ghp
     * @title
     * @description
     */
    class Solution {
        public void moveZeroes(int[] nums) {
            List<Integer> list = new ArrayList<>();
            for (int i = 0; i < nums.length; i++) {
                if (nums[i] != 0){
                    list.add(nums[i]);
                }
            }
            Arrays.fill(nums, 0);
            nums =  Arrays.copyOfRange(
                    list.stream().mapToInt(Integer::intValue).toArray(),
                    0, nums.length);
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为数组中元素的个数

    解决方法:使用for循环,逐个赋值(这里我就是使用lambda表达式实现,效果都是一样的,但是这种更加优雅)

    /**
     * @author ghp
     * @title
     * @description
     */
    class Solution {
        public void moveZeroes(int[] nums) {
            List<Integer> list = new ArrayList<>();
            for (int i = 0; i < nums.length; i++) {
                if (nums[i] != 0) {
                    list.add(nums[i]);
                }
            }
            Arrays.fill(nums, 0);
            IntStream.range(0, list.size())
                    .forEach(i -> nums[i] = list.get(i));
        }
    }
    
  • 解法二:双指针

    这个思路是非类似于快排的那个划分左右区间,设置两个指针,使得左区间都比主元小,右区间都比主元大或等。

    这里我们相当于是把0当作主元,左区间都是不等于0的,右区间都是等于0的

    class Solution {
        public void moveZeroes(int[] nums) {
            int i = 0;
            // 遍历数组,将非0元素放到i的左侧
            for (int j = 0; j < nums.length; j++) {
                if (nums[j] != 0){
                    // 当前元素不等于0,将非0元素放到i的左侧
                    int t = nums[j];
                    nums[j] = nums[i];
                    nums[i] = t;
                    i++;
                }
            }
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中 n n n 为数组中元素的个数

寻找重复数

🔒题目

原题链接:287.寻找重复数

image-20230724141701908

🔑题解

本题总共有以下解法:

  1. 需要额外空间,需要修改原始数组:排序

  2. 需要额外空间,不需要修改原始数组:计数法、哈希表

  3. 不需要额外空间,需要修改原始数组:标记法、索引排序

  4. 不需要额外空间,不需要修改原始数组:暴力枚举、二分查找、位运算、快慢指针

PS:本文只讲解了二分查找、快慢指针、位运算三种能过且比较牛的方法,关于其它方法感兴趣都可以参考这篇文章:9种方法(可能是目前最全的),拓展大家思路 - 寻找重复数 - 力扣(LeetCode)

  • 解法一:快慢指针(Floyd 判圈算法)

    这个算法在前面已经多次遇到了,比如:第33天的环形链表、第34天的排序链表、第35天的相交链表、第40天的回文链表等都能看到快慢指针算法的身影。可能我们一下子无法直接联想到环形链表,这里我们画一个草图,将数组转换成一个环形链表(这是一种数学抽象,类似于七桥问题,把一个问题抽象成另一个与之等价的问题)

    image-20230724151309729

    我们把数值的值当成链表的下一个节点,这个值与索引进行一个映射,从而可以通过上面的链表得到下面这个链表,此时我们把”要数组中的找重复元素“这个问题转换成"要找链表中环的入口节点",说到这里,如果你对环形链表这一题有经验的话,很快就能够解决了。如果你对环形链表不是很懂的话,可以参考这篇文章【LeetCode热题100】打卡第33天:环形链表

    image-20230724151314590

    注意:本题能够使用快慢指针的前提是 1 < = n u m s [ i ] < = n 1<=nums[i]<=n 1<=nums[i]<=n,这样能够保障指针无论如何移动都不会出现索引越界

    这里初略讲解以下如何定位环形链表的入环节点:

    1. 第一次遍历,fast比slow多走一步,寻找到fast和slow相等的节点,然后将fast重置到起始节点
    2. 第二次遍历,fast和slow走相同的步数,寻找到fast和slow相等的节点,此时fast和slow相遇的节点就是入环节点

    至于详细证明思路,可以参考我上面给出的那个链接,链接的那篇文章中已给出比较详细的解答了

    /**
     * @author ghp
     * @title
     * @description
     */
    class Solution {
        public int findDuplicate(int[] nums) {
            int fast = 0, slow = 0;
            do {
                fast = nums[nums[fast]];
                slow = nums[slow];
            } while (fast != slow);
            fast = 0;
            while (fast != slow) {
                fast = nums[fast];
                slow = nums[slow];
            }
            return fast;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中n为数组中元素的个数

  • 解法二:二分查找

    本题主要用到了抽屉原理,简单来说就是把 10 个苹果放进 9 个抽屉,至少有一个抽屉里至少放 2 个苹果。

    其此我们还需要寻找出有序的地方,本题有序的地方是隐式的,即比当前元素小的元素是有序的,只要发现这一点,其实就会变得很简单,但往往这一点一般很慢发现,这也是本题相较于其他显示有序的一个难点

    我们新增一个变量cnt[i]来记录当前数组中小于等于i的数有多少个,然后可以的发现cnt数组是有序的,对于有序数组我们

    ①如果我们将n个数放到n个位置上(数的范围是1~n),这些数不重复,则此时 cnt==mid

    image-20230724173301756

    ②如果我们将n个数放到n+1个位置上(数的范围是1~n),这些数不重复,如果此时 cnt<=mid,则说明重复的数一定在左侧区间,因为数是在1~n这个区间选的,cnt[n]<=mid说明比n小的数不到一半(正常情况是刚好一半的),根据抽屉原理,一定是有一个比mid小的数重复了,这样才会出现cnt[n]<=mid,所以重复的数在mid的左侧

    image-20230724184445756

    ③如果我们将n个数放到n+1个位置上,如果是左侧的数多了,则会导致cnt[n]>mid,此时我们可以在左侧区间寻找

    image-20230724185558331

    温馨提示:对于所有的二分查找,边界值都是需要十分注意的,这个我在以前总结的二分查找中就已经进行了详细讲解,这里我也不在赘述了,直接给出结论,如果想要了解的,可以参考我以前写的一篇关于二分查找边界值问题的总结

    1. 对于向下取整mid = (right-left)/2 + left ,如果取等 while(left<=right),那么目标值在右right=mid-1,目标值在左left=mid+1

    2. 对于向下取整mid=(right-left)/2 + left,如果不取等while(left<right),那么目标值在右right=mid,目标值在左left=mid+1

      如果取等匹配right=mid会导致死循环,如果不取等匹配right=mid-1会出现遗漏导致结果错误

    /**
     * @author ghp
     * @title
     * @description
     */
    class Solution {
        public int findDuplicate(int[] nums) {
            int left = 1, right = nums.length - 1;
            while (left < right) {
                int mid = (right - left) / 2 + left;
                // 计算当前小于等于mid的元素有多少个
                int count = 0;
                for (int i = 0; i < nums.length; i++) {
                    if (nums[i] <= mid){
                        count++;
                    }
                }
                if (count > mid){
                    // 比mid小的元素超过了mid个,根据抽屉原理可以知道mid左侧出现了重复元素
                    right = mid;
                }else{
                    // 比mid小的元素超过了mid个,根据抽屉原理可以知道mid右侧出现了重复元素
                    left = mid + 1;
                }
            }
            return left;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中n为数组中元素的个数

  • 解法三:位运算

    太强了,感兴趣的可以去看LeetCode官网,我先把前面两种解法消化吸收了

    class Solution {
        public int findDuplicate(int[] nums) {
            int n = nums.length, ans = 0;
            int bit_max = 31;
            while (((n - 1) >> bit_max) == 0) {
                bit_max -= 1;
            }
            for (int bit = 0; bit <= bit_max; ++bit) {
                int x = 0, y = 0;
                for (int i = 0; i < n; ++i) {
                    if ((nums[i] & (1 << bit)) != 0) {
                        x += 1;
                    }
                    if (i >= 1 && ((i & (1 << bit)) != 0)) {
                        y += 1;
                    }
                }
                if (x > y) {
                    ans |= 1 << bit;
                }
            }
            return ans;
        }
    }
    
    作者:LeetCode-Solution
    链接:https://leetcode.cn/problems/find-the-duplicate-number/solution/xun-zhao-zhong-fu-shu-by-leetcode-solution/
    来源:力扣(LeetCode)
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
    

    复杂度分析:

    • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中n为数组中元素的个数

二叉树的序列化与反序列化

🔒题目

原题链接:297.二叉树的序列化与反序列化

image-20230724191312364

🔑题解

  • 解法一:BFS(层序遍历)

    不知道为什么我第一眼看着提感觉挺简单的,直接BFS不就好了吗,结果bug频出,一眨眼一小时就过去了,经过不断的debug最终成功完成了初步代码,并最终过了😄写这题的思路也比较简答, 直接使用BFS实现层序遍历即可

    如果不会层序遍历的话,可以参考这篇文章:【LeetCode热题100】打卡第29天:二叉树的层序遍历

    class Codec {
        public String serialize(TreeNode root) {
            if (root == null) {
                // 防止NPE
                return null;
            }
            // 存储每一层的节点的值
            StringBuilder ans = new StringBuilder(root.val + ",");
            // BFS层序遍历所有节点,将二叉树所有节点的值转存到ans中
            Deque<TreeNode> queue = new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                TreeNode pre = queue.poll();
                TreeNode left = pre.left;
                if (left != null) {
                    queue.offer(left);
                }
                ans.append(left == null ? "null" : left.val).append(",");
                TreeNode right = pre.right;
                if (right != null) {
                    queue.offer(right);
                }
                ans.append(right == null ? "null" : right.val).append(",");
            }
            // 删除最后一个多余的逗号
            ans.deleteCharAt(ans.length() - 1);
            return ans.toString();
        }
    
        public TreeNode deserialize(String data) {
            if (data == null) {
                // 防止NPE
                return null;
            }
            // 将String转成List方便后续逻辑处理
            String[] dataStr = data.split(",");
            List<Integer> dataList = Arrays.stream(dataStr)
                    .map(str -> str.equals("null") ? null : Integer.valueOf(str))
                    .collect(Collectors.toList());
            // BFS层序遍历所有节点,将层序遍历的字符串重新构建成一棵二叉树
            Deque<TreeNode> queue = new LinkedList<>();
            // 将根节点加入队列中
            TreeNode root = new TreeNode(dataList.get(0));
            queue.offer(root);
            dataList.remove(0);
            while (!dataList.isEmpty()) {
                TreeNode node = queue.poll();
                if (dataList.get(0) != null) {
                    // 这里一定要判空,否则自动拆箱时会报NPE,下面那个判空也是一样的
                    node.left = new TreeNode(dataList.get(0));
                    queue.offer(node.left);
                }
                dataList.remove(0);
                if (dataList.isEmpty()) {
                    // 防止NPE
                    break;
                }
                if (dataList.get(0) != null) {
                    node.right = new TreeNode(dataList.get(0));
                    queue.offer(node.right);
                }
                dataList.remove(0);
            }
            return root;
        }
    }
    

    复杂度分析:

    序列化

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    反序列化

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为二叉树节点的个数

    代码优化

    对于serialize方法:

    1. 每个循环只需要处理一个节点,不需要额外的变量来保存父节点

    对于deserialize方法:

    1. 使用整型数组代替列表,因为在循环中频繁进行插入和删除操作会导致列表的性能下降
    2. 使用索引标记当前节点的位置,避免频繁调用 dataList.get() 方法
    /**
     * @author ghp
     * @title
     * @description
     */
    class Codec {
    
        public String serialize(TreeNode root) {
            if (root == null) {
                return null;
            }
            StringBuilder ans = new StringBuilder();
            Deque<TreeNode> queue = new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                TreeNode node = queue.poll();
                if (node != null) {
                    ans.append(node.val).append(",");
                    queue.offer(node.left);
                    queue.offer(node.right);
                } else {
                    ans.append("null,");
                }
            }
            ans.deleteCharAt(ans.length() - 1);
            return ans.toString();
        }
    
        public TreeNode deserialize(String data) {
            if (data == null) {
                return null;
            }
            String[] dataStr = data.split(",");
            List<Integer> dataList = Arrays.stream(dataStr)
                    .map(str -> str.equals("null") ? null : Integer.valueOf(str))
                    .collect(Collectors.toList());
            Deque<TreeNode> queue = new LinkedList<>();
            TreeNode root = new TreeNode(dataList.get(0));
            queue.offer(root);
            int index = 1;
            for (; index < dataList.size(); index += 2) {
                TreeNode node = queue.poll();
                if (dataList.get(index) != null) {
                    node.left = new TreeNode(dataList.get(index));
                    queue.offer(node.left);
                }
                if (index + 1 < dataList.size() && dataList.get(index + 1) != null) {
                    node.right = new TreeNode(dataList.get(index + 1));
                    queue.offer(node.right);
                }
            }
            return root;
        }
    }
    
  • 解法二:DFS(前序遍历)

    这里主要是通过前序遍历实现

    image-20230724231231663

    1. 序列化实现比较简单,直接DFS搜索即可: [1,2,null,null,3,4,null,null,5,null,null]

    2. 反序列化的时候,第一个元素为根节点,接下来都是按照前序遍历的顺序,先走左边,直到遇到 null 结束,然后换另一边

    整个过程递归进行

    class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;
    
        TreeNode(int x) {
            val = x;
        }
    }
    
    /**
     * @author ghp
     * @title
     * @description
     */
    class Codec {
    
        public String serialize(TreeNode root) {
            StringBuilder ans = new StringBuilder();
            dfs(root, ans);
            ans.deleteCharAt(ans.length() - 1);
            return ans.toString();
        }
    
        private void dfs(TreeNode root, StringBuilder ans) {
            if (root == null) {
                ans.append("null,");
                return;
            }
            ans.append(root.val).append(",");
            dfs(root.left, ans);
            dfs(root.right, ans);
        }
    
        public TreeNode deserialize(String data) {
            String[] dataStr = data.split(",");
            // 根据前序遍历的结果构建二叉树
            return buildTree(dataStr);
        }
    
        private int i = 0;
        private TreeNode buildTree(String[] dataStr) {
            String value = dataStr[i++];
            if (value.equals("null")) {
                // 防止自动拆箱导致NPE,同时也是递归结束条件
                return null;
            }
            TreeNode node = new TreeNode(Integer.valueOf(value));
            // 构建左子树
            node.left = buildTree(dataStr);
            // 构建右子树
            node.right = buildTree(dataStr);
            return node;
        }
    }
    

    复杂度分析:

    序列化

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    反序列化

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为二叉树节点的个数

最长递增子序列

🔒题目

原题链接:300.最长递增子序列

image-20230724231525418

🔑题解

  • 解法一:暴力DFS(超时 22 / 54

    image-20230725131751062

    PS:画的有点丑,但是能看明白就行(●ˇ∀ˇ●)

    /**
     * @author ghp
     * @title
     * @description
     */
    public class Solution {
        public int lengthOfLIS(int[] nums) {
            // 最长递增子序列的长度
            int maxLength = 0;
            // DFS遍历每一个节点
            for (int i = 0; i < nums.length; i++) {
                int length = dfs(nums, i, Integer.MIN_VALUE);
                maxLength = Math.max(maxLength, length);
            }
            return maxLength;
        }
    
        private int dfs(int[] nums, int index, int preLen) {
            if (index == nums.length) {
                // 达到数组末尾,返回长度为0
                return 0;
            }
            int len1 = 0;
            if (nums[index] > preLen) {
                // 当前元素大于前一个元素,可以选择当前元素作为递增子序列的一部分
                len1 = 1 + dfs(nums, index + 1, nums[index]);
            }
            // 不选择当前元素,继续寻找下一个递增子序列
            int len2 = dfs(nums, index + 1, preLen);
            // 返回选择当前元素和不选择当前元素中的较长子序列的长度
            return Math.max(len1, len2);
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( 2 n ) O(2^n) O(2n),每一个节点都有选和不选两种情况,所以总的来说是 2 n 2^n 2n
    • 空间复杂度: O ( l o g n ) O(logn) O(logn),空间复杂度为递归的最大深度,最大深度是树的最大高度

    其中 n n n 为数组中元素的个数

    代码优化:时间优化

    我们可以通过记忆化搜索来大幅度提高搜索的速度,我们需要新增一个memo数组,memo[i][j]表示以第i个元素为结尾、且第j个元素为上一个结尾元素的最长递增子序列的长度。

    为了新增一个记忆搜索功能,我们需要对上面代码进行一个微型改造,我们在DFS搜索时,不能像前面一样传递上一个节点的长度,而是需要传递上一个节点的索引,这样我们才能够使用memo数组对当前状态进行标记,下面的示意图是添加了记忆数组之后的搜索

    image-20230725140526859

    通过Debug也可以看出来,每进行一次DFS,都可以直接将当前节点到其它任意节点的距离计算出来,这样就能大幅度进行剪枝了。比如上图,0到1这条路径,就可以计算出0到其它节点(1,0,3,2,3)的距离了,后面的路径0到0、0到3、0到2、0到3就不用再去重新遍历了,而是直接拿我们缓存在memo中的路径

    image-20230725140755759

    public class Solution {
        public int lengthOfLIS(int[] nums) {
            int maxLength = 1;
            // 记录节点的状态 memo[i][j]表示索引为j的节点到索引为i的节点的最长递增节点数
            int[][] memo = new int[nums.length][nums.length];
            // DFS搜索每一个节点
            for (int i = 0; i < nums.length; i++) {
                maxLength = Math.max(maxLength, dfs(nums, i, i, memo));
            }
            return maxLength;
        }
    
        private int dfs(int[] nums, int curIndex, int preIndex, int[][] memo) {
            if (curIndex >= nums.length) {
                // 后面已经没有节点了,结束搜索
                return 0;
            }
            if (memo[curIndex][preIndex] > 0) {
                // preIndex到curIndex这个状态已计算过,直接返回
                return memo[curIndex][preIndex];
            }
            int len1 = 0;
            if (preIndex == curIndex || nums[curIndex] > nums[preIndex]) {
                // 当前元素大于前一个元素,可以选择当前元素作为递增子序列的一部分
                len1 = 1 + dfs(nums, curIndex + 1, curIndex, memo);
            }
            // 不选择当前元素,继续寻找下一个递增子序列
            int len2 = dfs(nums, curIndex + 1, preIndex, memo);
            // 缓存preIndex到curIndex这个状态
            memo[curIndex][preIndex] = Math.max(len1, len2);
            // 返回选择当前元素和不选择当前元素中的较长子序列的长度
            return memo[curIndex][preIndex];
        }
    }
    

    记忆搜索是经典的拿时间换空间,时间复杂度虽然没有变,但是却大大缩减了搜索结果的时间,空间复杂度提高了

    复杂度分析:

    • 时间复杂度: O ( 2 n ) O(2^n) O(2n),每一个节点都有选和不选两种情况,所以总的来说是 2 n 2^n 2n
    • 空间复杂度: O ( n 2 ) O(n^2) O(n2),memo占用 n 2 n^2 n2的空间

    其中 n n n 为数组中元素的个数

    备注:将 memo[curIndex][preIndex] 转换为 memo[preIndex][curIndex] 是不可行的。这是因为 preIndex 的值是固定的,是遍历时的前一个索引,而 curIndex 是在不断递增变化的。

    如果我们将 memo[curIndex][preIndex] 转换为 memo[preIndex][curIndex],则无法正确存储和查找子问题的解决方案。由于 curIndex 不断增加,我们无法准确地映射到递归调用中的子问题。

    代码优化:空间优化

    我们可以发现memo每进行一次DFS都只用到了一列的数据,所以我们完全可以将二维的memo压缩为一维的memo

    public class Solution {
        public int lengthOfLIS(int[] nums) {
            int maxLength = 1;
            int[] memo = new int[nums.length];
            Arrays.fill(memo, 1);
            for (int i = 0; i < nums.length; i++) {
                maxLength = Math.max(maxLength, dfs(nums, i, memo));
            }
            return maxLength;
        }
    
        private int dfs(int[] nums, int curIndex, int[] memo) {
            if (curIndex >= nums.length) {
                return 0;
            }
            if (memo[curIndex] > 1) {
                return memo[curIndex];
            }
            int maxLen = 1;
            for (int i = curIndex + 1; i < nums.length; i++) {
                if (nums[i] > nums[curIndex]) {
                    maxLen = Math.max(maxLen, 1 + dfs(nums, i, memo));
                }
            }
            memo[curIndex] = maxLen;
            return maxLen;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n 2 ) O(n^2) O(n2),每一个节点都有选和不选两种情况,所以总的来说是 2 n 2^n 2n
    • 空间复杂度: O ( n ) O(n) O(n),memo占用 n n n的空间

    其中 n n n 为数组中元素的个数

  • 解法二:动态规划

    我们需要构建一个dp[i]dp[i]表示以nums[i]结尾的最长递增子序列的长度,此时我们可以知道 当前第i个节点结尾的最长递增子序列,一定是由前面的节点转移而来的,至于是前面哪一个节点,我们无法直接确定,所以此时需要遍历 前面 i+1个节点,在遍历的同时,我们不断更新当前的 dp[i],遍历完毕,即可得到当前最大长度。

    不知道为什么感觉动态规划比前面的DFS要简单多了

    import java.util.Arrays;
    
    /**
     * @author ghp
     * @title
     * @description
     */
    public class Solution {
        public int lengthOfLIS(int[] nums) {
            if (nums.length == 0) {
                return 0;
            }
            int maxLength = 1;
            int[] dp = new int[nums.length];
            // 每一个节点自身的初始长度都是1
            Arrays.fill(dp, 1);
            // 遍历每一个节点
            for (int i = 1; i < nums.length; i++) {
                // 遍历0~i之间的节点,计算出所有以当前nums[i]结尾的最长递增子序列的长度
                for (int j = 0; j < i; j++) {
                    if (nums[i] > nums[j]) {
                        dp[i] = Math.max(dp[i], dp[j] + 1);
                    }
                }
                maxLength = Math.max(maxLength, dp[i]);
            }
            return maxLength;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为数组中元素的个数

  • 解法三:动态规划+二分查找

    来自:300. 最长递增子序列(动态规划 + 二分查找,清晰图解) - 最长递增子序列 - 力扣(LeetCode)

    class Solution {
        public int lengthOfLIS(int[] nums) {
            int len = 1, n = nums.length;
            if (n == 0) {
                return 0;
            }
            int[] d = new int[n + 1];
            d[len] = nums[0];
            for (int i = 1; i < n; ++i) {
                if (nums[i] > d[len]) {
                    d[++len] = nums[i];
                } else {
                    int l = 1, r = len, pos = 0; // 如果找不到说明所有的数都比 nums[i] 大,此时要更新 d[1],所以这里将 pos 设为 0
                    while (l <= r) {
                        int mid = (l + r) >> 1;
                        if (d[mid] < nums[i]) {
                            pos = mid;
                            l = mid + 1;
                        } else {
                            r = mid - 1;
                        }
                    }
                    d[pos + 1] = nums[i];
                }
            }
            return len;
        }
    }
    
    作者:LeetCode-Solution
    链接:https://leetcode.cn/problems/longest-increasing-subsequence/solution/zui-chang-shang-sheng-zi-xu-lie-by-leetcode-soluti/
    来源:力扣(LeetCode)
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
    

    复杂度分析:

    • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为数组中元素的个数

删除无效括号

先缓缓w(゚Д゚)w,明天在写把,不然今天任务完不成了

🔒题目

原题链接:301.删除无效括号

image-20230725144743877

🔑题解

  • 解法一:暴力

    
    

    复杂度分析:

    • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中 n n n 为数组中元素的个数

  • 解法二:哈希表

    这个太强了,时间复杂度直接变成 O ( n ) O(n) O(n),它是利用Map的Key不能重复的特性,来判断元素是否符合要求。

    
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为数组中元素的个数

参考题解

  • 9种方法(可能是目前最全的),拓展大家思路 - 寻找重复数 - 力扣(LeetCode)
  • 使用「二分查找」搜索一个有范围的整数(结合「抽屉原理」) - 寻找重复数 - 力扣(LeetCode)
  • 【图解】dfs + bfs + 后序遍历 + 其他思路 - 二叉树的序列化与反序列化 - 力扣(LeetCode)# 【LeetCode热题100】打卡第44天:倒数第30~25题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/789885.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

力扣 763. 划分字母区间

题目来源&#xff1a;https://leetcode.cn/problems/partition-labels/description/ C题解1&#xff1a; 先遍历一遍使用哈希算法找到每个小写字母的最远的索引&#xff0c;再遍历一次&#xff0c;不断更新每个片段的最远距离。 class Solution { public:vector<int> pa…

Qt Core学习日记——第八天QMetaObject(下)

QMetaObject::normalizedType 将名称规范化。 例如&#xff1a; QByteArray normType QMetaObject::normalizedType(" int const *"); // normType is now "const int*" QMetaObject::connect(const QObject *sender, int signal_index, const QObject…

redis(12):springboot使用redis注解做缓存

1 新建springboot项目 2 相关注解 EnableCaching 在启动类上加上注解启动缓存 #作用在你要缓存的数据上 Cacheable(key"#id",cacheNames"com.sxt.service.impl.MenuServiceImpl") Cacheput 解决脏读 CachEvict&#xff08;解决脏读&#xff09; Cach…

01Mybatis报错日志 BindingException

01 Mybatis报错日志 BindingException Type interface com.zhnx.demo1.mapper.UserMapper is not known to the MapperRegistry. org.apache.ibatis.binding.BindingException: Type interface com.zhnx.demo1.mapper.UserMapper is not known to the MapperRegistry.at org…

腾讯云服务器公共镜像大全_Linux和Windows操作系统

腾讯云CVM服务器的公共镜像是由腾讯云官方提供的镜像&#xff0c;公共镜像包含基础操作系统和腾讯云提供的初始化组件&#xff0c;公共镜像分为Windows和Linux两大类操作系统&#xff0c;如TencentOS Server、Windows Server、OpenCloudOS、CentOS Stream、CentOS、Ubuntu、Deb…

LeetCode116. 填充每个节点的下一个右侧节点指针

116. 填充每个节点的下一个右侧节点指针 文章目录 [116. 填充每个节点的下一个右侧节点指针](https://leetcode.cn/problems/populating-next-right-pointers-in-each-node/)一、题目二、题解方法一&#xff1a;迭代方法二&#xff1a;递归 一、题目 给定一个 完美二叉树 &…

redis的并发安全问题:redis的事务VSLua脚本

redis为什么会发生并发安全问题&#xff1f; 在redis中&#xff0c;处理的数据都在内存中&#xff0c;数据操作效率极高&#xff0c;单线程的情况下&#xff0c;qps轻松破10w。反而在使用多线程时&#xff0c;为了保证线程安全&#xff0c;采用了一些同步机制&#xff0c;以及多…

grid map学习笔记1之Ubuntu18.04+ROS-melodic编译安装grid_map栅格地图及示例运行

文章目录 0 引言1 安装依赖和编译1.1 安装依赖1.2 下载编译 2 运行示例2.1 simple_demo2.2 tutorial_demo2.3 iterators_demo2.4 image_to_gridmap_demo2.5 grid_map_to_image_demo2.6 opencv_demo2.7 resolution_change_demo2.8 filters_demo2.9 interpolation_demo 0 引言 苏…

java项目之个人交友网站(ssm+mysql+jsp)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的个人交友网站。技术交流和部署相关看文章末尾&#xff01; 开发环境&#xff1a; 后端&#xff1a; 开发语言&#xff1a;Java 框架&…

计算机启动过程uefi+gpt方式

启动过程&#xff1a; 一、通电 按下开关&#xff0c;不用多说 二、uefi阶段 通电后&#xff0c;cpu第一条指令是执行uefi固件代码。 uefi固件代码固化在主板上的rom中。 &#xff08;一&#xff09;uefi介绍 UEFI&#xff0c;全称Unified Extensible Firmware Interface&am…

基于C#的无边框窗体动画效果的完美解决方案 - 开源研究系列文章

最近在整理和编写基于C#的WinForm应用程序&#xff0c;然后碰到一个其他读者也可能碰到的问题&#xff0c;就是C#的Borderless无边框窗体的动画效果问题。 在Visual Studio 2022里&#xff0c;C#的WinForm程序提供了Borderless无边框窗体的样式效果&#xff0c;但是它没提供在无…

scrollIntoView()定位元素显示导致页面上移解决方法?

文章目录 项目场景&#xff1a;问题描述原因分析&#xff1a;解决方案&#xff1a;1、使用fixed固定定位父级元素2、控制父元素的scrollTop 项目场景&#xff1a; 在项目中需要根据当前组件的componentId来定位到页面的顶部显示。 问题描述 本来想着使用最传统的方法&#xff0…

MYSQL 练习2

练习2 创建company数据库在数据库中根据以下图示创建表&#xff0c;表结构如下&#xff0c;并插入以下数据&#xff0c;完成下面的sql。 ​ 表结构如下&#xff1a; salgrade表 salrade表数据 完成以下SQL编写&#xff1a; 修改emp表中sal字段为salary查找年薪在20000到3000…

JavaScript布尔逻辑

布尔逻辑是一种逻辑学上的分支&#xff0c;涉及真和假的值。布尔逻辑中使用的运算符仅返回真或假结果&#xff0c;这些运算符包括取反、与、或等。布尔逻辑通常用于电子学、计算机科学和数学等领域&#xff0c;其中真和假的值对于决策和控制流程非常重要。在计算机编程中&#…

60个AIGC专业术语手册;5种大模型微调方法总结;大模型创业潮成败点评;AIGC通用大模型产品测评报告 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; &#x1f916; ChatGLM 金融大模型挑战赛&#xff0c;冠军送12B模型授权30W算力 GLM大模型联合安硕信息、阿里云、魔搭社区、北京交通大学&#xff0…

【并发专题】线程池ThreadPoolExecutorl底层原理源码分析

目录 前置知识课程内容一、线程池1.基本介绍2.Executor接口3.线程池的重点属性ctl字段RUNNING字段SHUTDOWN字段 二、线程池的创建及参数解读三、核心源码解读 学习总结 前置知识 Q1&#xff1a;终止一个线程的方法有哪些&#xff1f; 答&#xff1a;通常有4个方法。其中前2个是…

机械制造三维虚拟仿真实训的优点

机械制造三维虚拟仿真实训系统是一种基于计算机技术的机械原理仿真软件&#xff0c;它可以模拟各种机械系统的运动和受力情况&#xff0c;帮助用户深入了解机械原理的工作原理和应用。该系统采用三维建模技术&#xff0c;将机械系统的各个部分进行数字化建模&#xff0c;并通过…

科研院所用泛微搭建信创办公平台,统一办公,业务融合,安全便捷

国家全面推动重要领域的信创改造工作&#xff0c;要求到2027年底&#xff0c;对综合办公、经营管理、生产运营等系统实现“应替尽替、能替则替”。 科研机构作为智力、知识密集型机构&#xff0c;承载着大量数据、信息资产&#xff0c;数字化程度高&#xff0c;业务系统多样&a…

阿里云部署 ChatGLM2-6B 与 langchain+ChatGLM

1.ChatGLM2-6B 部署 更新系统 apt-get update 安装git apt-get install git-lfs git init git lfs install 克隆 ChatGLM2-6B 源码 git clone https://github.com/THUDM/ChatGLM2-6B.git 克隆 chatglm2-6b 模型 #进入目录 cd ChatGLM2-6B #创建目录 mkdir model #进入目录 cd m…

MySql增删改查基础

目录 1.基本操作 1.1新增 1.2查询 1.2.1指定查询 1.2.2排序查询 1.2.3分页查询 1.3修改 1.4删除 2.进阶操作 2.1键值约束 2.1.1主键约束 2.1.2唯一键约束 2.1.3非空约束 2.1.4默认值 2.1.5自增属性 ​编辑 2.1.6外键约束 2.1.7check子句 3.表的设计 3.1ER关…