102. 二叉树的层序遍历
给你二叉树的根节点 root
,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:
输入:root = [1]
输出:[[1]]
示例 3:
输入:root = []
输出:[]
提示:
- 树中节点数目在范围
[0, 2000]
内 -1000 <= Node.val <= 1000
思考:
本题又是一种新的二叉树遍历方式,层序遍历,这种遍历方式其实较为简单,符合正常的遍历顺序。所以我们可以采用队列这种数据结构,运用其先进先出的特性进行遍历。
利用队列遍历:
本题要求按每一层遍历,所以我们采用for循环的形式,进行每一层的遍历。值得注意的是,随着结点加入队列中,队列的大小也会随之改变,所以在进行for循环之前,需要提前存储队列的大小size。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty())
{
vector<int> childvector;//子容器,储存每一层遍历的结果
int size = que.size();//记录队列当前大小
for (int i = 0; i < size; i++)
{
TreeNode* cur = que.front();
que.pop();
if (cur->left)
{
que.push(cur->left);
}
if (cur->right)
{
que.push(cur->right);
}
childvector.push_back(cur->val);
}
result.push_back(childvector);
}
return result;
}
};
递归法:
当然,该题也可以使用递归法来实现,该题中,递归的终止条件为:遍历到空节点,此时说明已将所有结点遍历完毕,进行返回,结束递归。每轮递归中,利用depth记录层数,当进入新的一层时,创建新的子容器。
//递归法
class Solution {
public:
void order(TreeNode* cur, vector<vector<int>>& result, int depth)
{
if (cur == nullptr) return;
if (result.size() == depth) result.push_back(vector<int>());//添加子容器
result[depth].push_back(cur->val);
order(cur->left, result, depth + 1);
order(cur->right, result, depth + 1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> result;
int depth = 0;
order(root, result, depth);
return result;
}
};
参考:代码随想录
往期回顾:
LeetCode144、145、94. 二叉树遍历
LeetCode18. 四数之和
LeetCode15. 三数之和
LeetCode383. 赎金信
LeetCode454. 四数相加 II
LeetCode1. 两数之和
LeetCode202. 快乐数
LeetCode350. 两个数组的交集 II
LeetCode349. 两个数组的交集
LeetCode1002. 查找共用字符